# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. """Compute resolution metrics from resolution matrix. Resolution metrics: localisation error, spatial extent, relative amplitude. Metrics can be computed for point-spread and cross-talk functions (PSFs/CTFs). """ import numpy as np from ..source_estimate import SourceEstimate from ..utils import _check_option, logger, verbose @verbose def resolution_metrics( resmat, src, function="psf", metric="peak_err", threshold=0.5, verbose=None ): """Compute spatial resolution metrics for linear solvers. Parameters ---------- resmat : array, shape (n_orient * n_vertices, n_vertices) The resolution matrix. If not a square matrix and if the number of rows is a multiple of number of columns (e.g. free or loose orientations), then the Euclidean length per source location is computed (e.g. if inverse operator with free orientations was applied to forward solution with fixed orientations). src : instance of SourceSpaces Source space object from forward or inverse operator. function : 'psf' | 'ctf' Whether to compute metrics for columns (point-spread functions, PSFs) or rows (cross-talk functions, CTFs) of the resolution matrix. metric : str The resolution metric to compute. Allowed options are: Localization-based metrics: - ``'peak_err'`` Peak localization error (PLE), Euclidean distance between peak and true source location. - ``'cog_err'`` Centre-of-gravity localisation error (CoG), Euclidean distance between CoG and true source location. Spatial-extent-based metrics: - ``'sd_ext'`` Spatial deviation (e.g. :footcite:`MolinsEtAl2008,HaukEtAl2019`). - ``'maxrad_ext'`` Maximum radius to 50%% of max amplitude. Amplitude-based metrics: - ``'peak_amp'`` Ratio between absolute maximum amplitudes of peaks per location and maximum peak across locations. - ``'sum_amp'`` Ratio between sums of absolute amplitudes. threshold : float Amplitude fraction threshold for spatial extent metric 'maxrad_ext'. Defaults to 0.5. %(verbose)s Returns ------- resolution_metric : instance of SourceEstimate The resolution metric. Notes ----- For details, see :footcite:`MolinsEtAl2008,HaukEtAl2019`. .. versionadded:: 0.20 References ---------- .. footbibliography:: """ # Check if input options are valid metrics = ("peak_err", "cog_err", "sd_ext", "maxrad_ext", "peak_amp", "sum_amp") if metric not in metrics: raise ValueError(f'"{metric}" is not a recognized metric.') if function not in ["psf", "ctf"]: raise ValueError(f"Not a recognised resolution function: {function}.") if metric in ("peak_err", "cog_err"): resolution_metric = _localisation_error( resmat, src, function=function, metric=metric ) elif metric in ("sd_ext", "maxrad_ext"): resolution_metric = _spatial_extent( resmat, src, function=function, metric=metric, threshold=threshold ) elif metric in ("peak_amp", "sum_amp"): resolution_metric = _relative_amplitude( resmat, src, function=function, metric=metric ) # get vertices from source space vertno_lh = src[0]["vertno"] vertno_rh = src[1]["vertno"] vertno = [vertno_lh, vertno_rh] # Convert array to source estimate resolution_metric = SourceEstimate(resolution_metric, vertno, tmin=0.0, tstep=1.0) return resolution_metric def _localisation_error(resmat, src, function, metric): """Compute localisation error metrics for resolution matrix. Parameters ---------- resmat : array, shape (n_orient * n_locations, n_locations) The resolution matrix. If not a square matrix and if the number of rows is a multiple of number of columns (i.e. n_orient>1), then the Euclidean length per source location is computed (e.g. if inverse operator with free orientations was applied to forward solution with fixed orientations). src : Source Space Source space object from forward or inverse operator. function : 'psf' | 'ctf' Whether to compute metrics for columns (point-spread functions, PSFs) or rows (cross-talk functions, CTFs). metric : str What type of localisation error to compute. - 'peak_err': Peak localisation error (PLE), Euclidean distance between peak and true source location, in centimeters. - 'cog_err': Centre-of-gravity localisation error (CoG), Euclidean distance between CoG and true source location, in centimeters. Returns ------- locerr : array, shape (n_locations,) Localisation error per location (in cm). """ # ensure resolution matrix is square # combine rows (Euclidean length) if necessary resmat = _rectify_resolution_matrix(resmat) locations = _get_src_locations(src) # locs used in forw. and inv. operator locations = 100.0 * locations # convert to cm (more common) # we want to use absolute values, but doing abs() mases a copy and this # can be quite expensive in memory. So let's just use abs() in place below. # The code below will operate on columns, so transpose if you want CTFs if function == "ctf": resmat = resmat.T # Euclidean distance between true location and maximum if metric == "peak_err": resmax = [abs(col).argmax() for col in resmat.T] # max inds along cols maxloc = locations[resmax, :] # locations of maxima diffloc = locations - maxloc # diff btw true locs and maxima locs locerr = np.linalg.norm(diffloc, axis=1) # Euclidean distance # centre of gravity elif metric == "cog_err": locerr = np.empty(locations.shape[0]) # initialise result array for ii, rr in enumerate(locations): resvec = abs(resmat[:, ii].T) # corresponding column of resmat cog = resvec.dot(locations) / np.sum(resvec) # centre of gravity locerr[ii] = np.sqrt(np.sum((rr - cog) ** 2)) # Euclidean distance return locerr def _spatial_extent(resmat, src, function, metric, threshold=0.5): """Compute spatial width metrics for resolution matrix. Parameters ---------- resmat : array, shape (n_orient * n_dipoles, n_dipoles) The resolution matrix. If not a square matrix and if the number of rows is a multiple of number of columns (i.e. n_orient>1), then the Euclidean length per source location is computed (e.g. if inverse operator with free orientations was applied to forward solution with fixed orientations). src : Source Space Source space object from forward or inverse operator. function : 'psf' | 'ctf' Whether to compute metrics for columns (PSFs) or rows (CTFs). metric : str What type of width metric to compute. - 'sd_ext': spatial deviation (e.g. Molins et al.), in centimeters. - 'maxrad_ext': maximum radius to fraction threshold of max amplitude, in centimeters. threshold : float Amplitude fraction threshold for metric 'maxrad'. Defaults to 0.5. Returns ------- width : array, shape (n_dipoles,) Spatial width metric per location. """ locations = _get_src_locations(src) # locs used in forw. and inv. operator locations = 100.0 * locations # convert to cm (more common) # The code below will operate on columns, so transpose if you want CTFs if function == "ctf": resmat = resmat.T width = np.empty(resmat.shape[1]) # initialise output array # spatial deviation as in Molins et al. if metric == "sd_ext": for ii in range(locations.shape[0]): diffloc = locations - locations[ii, :] # locs w/r/t true source locerr = np.sum(diffloc**2, 1) # squared Eucl dists to true source resvec = abs(resmat[:, ii]) ** 2 # pick current row # spatial deviation (Molins et al, NI 2008, eq. 12) width[ii] = np.sqrt(np.sum(np.multiply(locerr, resvec)) / np.sum(resvec)) # maximum radius to 50% of max amplitude elif metric == "maxrad_ext": for ii, resvec in enumerate(resmat.T): # iterate over columns resvec = abs(resvec) # operate on absolute values amps = resvec.max() # indices of elements with values larger than fraction threshold # of peak amplitude thresh_idx = np.where(resvec > threshold * amps) # get distances for those indices from true source position locs_thresh = locations[thresh_idx, :] - locations[ii, :] # get maximum distance width[ii] = np.sqrt(np.sum(locs_thresh**2, 1).max()) return width def _relative_amplitude(resmat, src, function, metric): """Compute relative amplitude metrics for resolution matrix. Parameters ---------- resmat : array, shape (n_orient * n_dipoles, n_dipoles) The resolution matrix. If not a square matrix and if the number of rows is a multiple of number of columns (i.e. n_orient>1), then the Euclidean length per source location is computed (e.g. if inverse operator with free orientations was applied to forward solution with fixed orientations). src : Source Space Source space object from forward or inverse operator. function : 'psf' | 'ctf' Whether to compute metrics for columns (PSFs) or rows (CTFs). metric : str Which amplitudes to use. - 'peak_amp': Ratio between absolute maximum amplitudes of peaks per location and maximum peak across locations. - 'sum_amp': Ratio between sums of absolute amplitudes. Returns ------- relamp : array, shape (n_dipoles,) Relative amplitude metric per location. """ # The code below will operate on columns, so transpose if you want CTFs if function == "ctf": resmat = resmat.T # Ratio between amplitude at peak and global peak maximum if metric == "peak_amp": # maximum amplitudes per column maxamps = np.array([abs(col).max() for col in resmat.T]) maxmaxamps = maxamps.max() # global absolute maximum relamp = maxamps / maxmaxamps # ratio between sums of absolute amplitudes elif metric == "sum_amp": # sum of amplitudes per column sumamps = np.array([abs(col).sum() for col in resmat.T]) sumampsmax = sumamps.max() # maximum of summed amplitudes relamp = sumamps / sumampsmax return relamp def _get_src_locations(src): """Get source positions from src object.""" # vertices used in forward and inverse operator # for now let's just support surface source spaces _check_option("source space kind", src.kind, ("surface",)) vertno_lh = src[0]["vertno"] vertno_rh = src[1]["vertno"] # locations corresponding to vertices for both hemispheres locations_lh = src[0]["rr"][vertno_lh, :] locations_rh = src[1]["rr"][vertno_rh, :] locations = np.vstack([locations_lh, locations_rh]) return locations def _rectify_resolution_matrix(resmat): """ Ensure resolution matrix is square matrix. If resmat is not a square matrix, it is assumed that the inverse operator had free or loose orientation constraint, i.e. multiple values per source location. The Euclidean length for values at each location is computed to make resmat a square matrix. """ shape = resmat.shape if not shape[0] == shape[1]: if shape[0] < shape[1]: raise ValueError( f"Number of target sources ({shape[0]}) cannot be lower " f"than number of input sources ({shape[1]})" ) if np.mod(shape[0], shape[1]): # if ratio not integer raise ValueError( f"Number of target sources ({shape[0]}) must be a " f"multiple of the number of input sources ({shape[1]})" ) ns = shape[0] // shape[1] # number of source components per vertex # Combine rows of resolution matrix resmatl = [ np.sqrt((resmat[ns * i : ns * (i + 1), :] ** 2).sum(axis=0)) for i in np.arange(0, shape[1], dtype=int) ] resmat = np.array(resmatl) logger.info( "Rectified resolution matrix from (%d, %d) to (%d, %d)." % (shape[0], shape[1], resmat.shape[0], resmat.shape[1]) ) return resmat