# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import os import os.path as op import shutil from collections import defaultdict from contextlib import nullcontext from copy import deepcopy from dataclasses import dataclass, field from datetime import timedelta from inspect import getfullargspec from pathlib import Path import numpy as np from .._fiff.compensator import make_compensator, set_current_comp from .._fiff.constants import FIFF from .._fiff.meas_info import ( ContainsMixin, SetChannelsMixin, _ensure_infos_match, _unit2human, write_meas_info, ) from .._fiff.pick import ( _picks_to_idx, channel_type, pick_channels, pick_info, pick_types, ) from .._fiff.proj import ProjMixin, _proj_equal, activate_proj, setup_proj from .._fiff.utils import _check_orig_units, _make_split_fnames from .._fiff.write import ( _NEXT_FILE_BUFFER, _get_split_size, end_block, start_and_end_file, start_block, write_complex64, write_complex128, write_dau_pack16, write_double, write_float, write_id, write_int, write_string, ) from ..annotations import ( Annotations, _annotations_starts_stops, _combine_annotations, _handle_meas_date, _sync_onset, _write_annotations, ) from ..channels.channels import ( InterpolationMixin, ReferenceMixin, UpdateChannelsMixin, ) from ..defaults import _handle_default from ..event import concatenate_events, find_events from ..filter import ( FilterMixin, _check_fun, _check_resamp_noop, _resamp_ratio_len, _resample_stim_channels, notch_filter, resample, ) from ..html_templates import _get_html_template from ..parallel import parallel_func from ..time_frequency.spectrum import Spectrum, SpectrumMixin, _validate_method from ..time_frequency.tfr import RawTFR from ..utils import ( SizeMixin, TimeMixin, _arange_div, _build_data_frame, _check_fname, _check_option, _check_pandas_index_arguments, _check_pandas_installed, _check_preload, _check_time_format, _convert_times, _file_like, _get_argvalues, _get_stim_channel, _pl, _scale_dataframe_data, _stamp_to_dt, _time_mask, _validate_type, check_fname, copy_doc, copy_function_doc_to_method_doc, fill_doc, logger, repr_html, sizeof_fmt, verbose, warn, ) from ..viz import _RAW_CLIP_DEF, plot_raw @fill_doc class BaseRaw( ProjMixin, ContainsMixin, UpdateChannelsMixin, ReferenceMixin, SetChannelsMixin, InterpolationMixin, TimeMixin, SizeMixin, FilterMixin, SpectrumMixin, ): """Base class for Raw data. Parameters ---------- %(info_not_none)s preload : bool | str | ndarray Preload data into memory for data manipulation and faster indexing. If True, the data will be preloaded into memory (fast, requires large amount of memory). If preload is a string, preload is the file name of a memory-mapped file which is used to store the data on the hard drive (slower, requires less memory). If preload is an ndarray, the data are taken from that array. If False, data are not read until save. first_samps : iterable Iterable of the first sample number from each raw file. For unsplit raw files this should be a length-one list or tuple. last_samps : iterable | None Iterable of the last sample number from each raw file. For unsplit raw files this should be a length-one list or tuple. If None, then preload must be an ndarray. filenames : tuple Tuple of length one (for unsplit raw files) or length > 1 (for split raw files). raw_extras : list of dict The data necessary for on-demand reads for the given reader format. Should be the same length as ``filenames``. Will have the entry ``raw_extras['orig_nchan']`` added to it for convenience. orig_format : str The data format of the original raw file (e.g., ``'double'``). dtype : dtype | None The dtype of the raw data. If preload is an ndarray, its dtype must match what is passed here. buffer_size_sec : float The buffer size in seconds that should be written by default using :meth:`mne.io.Raw.save`. orig_units : dict | None Dictionary mapping channel names to their units as specified in the header file. Example: {'FC1': 'nV'}. .. versionadded:: 0.17 %(verbose)s See Also -------- mne.io.Raw : Documentation of attributes and methods. Notes ----- This class is public to allow for stable type-checking in user code (i.e., ``isinstance(my_raw_object, BaseRaw)``) but should not be used as a constructor for `Raw` objects (use instead one of the subclass constructors, or one of the ``mne.io.read_raw_*`` functions). Subclasses must provide the following methods: * _read_segment_file(self, data, idx, fi, start, stop, cals, mult) (only needed for types that support on-demand disk reads) """ _extra_attributes = () @verbose def __init__( self, info, preload=False, first_samps=(0,), last_samps=None, filenames=(None,), raw_extras=(None,), orig_format="double", dtype=np.float64, buffer_size_sec=1.0, orig_units=None, *, verbose=None, ): # wait until the end to preload data, but triage here if isinstance(preload, np.ndarray): # some functions (e.g., filtering) only work w/64-bit data if preload.dtype not in (np.float64, np.complex128): raise RuntimeError( f"datatype must be float64 or complex128, not {preload.dtype}" ) if preload.dtype != dtype: raise ValueError("preload and dtype must match") self._data = preload self.preload = True assert len(first_samps) == 1 last_samps = [first_samps[0] + self._data.shape[1] - 1] load_from_disk = False else: if last_samps is None: raise ValueError( "last_samps must be given unless preload is an ndarray" ) if not preload: self.preload = False load_from_disk = False else: load_from_disk = True self._last_samps = np.array(last_samps) self._first_samps = np.array(first_samps) orig_ch_names = info["ch_names"] with info._unlock(check_after=True): # be permissive of old code if isinstance(info["meas_date"], tuple): info["meas_date"] = _stamp_to_dt(info["meas_date"]) self.info = info self.buffer_size_sec = float(buffer_size_sec) cals = np.empty(info["nchan"]) for k in range(info["nchan"]): cals[k] = info["chs"][k]["range"] * info["chs"][k]["cal"] bad = np.where(cals == 0)[0] if len(bad) > 0: raise ValueError( "Bad cals for channels %s" % {ii: self.ch_names[ii] for ii in bad} ) self._cals = cals self._raw_extras = list(dict() if r is None else r for r in raw_extras) for r in self._raw_extras: r["orig_nchan"] = info["nchan"] self._read_picks = [np.arange(info["nchan"]) for _ in range(len(raw_extras))] # deal with compensation (only relevant for CTF data, either CTF # reader or MNE-C converted CTF->FIF files) self._read_comp_grade = self.compensation_grade # read property if self._read_comp_grade is not None and len(info["comps"]): logger.info("Current compensation grade : %d" % self._read_comp_grade) self._comp = None self._filenames = list(filenames) _validate_type(orig_format, str, "orig_format") _check_option("orig_format", orig_format, ("double", "single", "int", "short")) self.orig_format = orig_format # Sanity check and set original units, if provided by the reader: if orig_units: if not isinstance(orig_units, dict): raise ValueError( f"orig_units must be of type dict, but got {type(orig_units)}" ) # original units need to be truncated to 15 chars or renamed # to match MNE conventions (channel name unique and less than # 15 characters). orig_units = deepcopy(orig_units) for old_ch, new_ch in zip(orig_ch_names, info["ch_names"]): if old_ch in orig_units: this_unit = orig_units[old_ch] del orig_units[old_ch] orig_units[new_ch] = this_unit # STI 014 channel is native only to fif ... for all other formats # this was artificially added by the IO procedure, so remove it ch_names = list(info["ch_names"]) if ("STI 014" in ch_names) and not (self.filenames[0].endswith(".fif")): ch_names.remove("STI 014") # Each channel in the data must have a corresponding channel in # the original units. ch_correspond = [ch in orig_units for ch in ch_names] if not all(ch_correspond): ch_without_orig_unit = ch_names[ch_correspond.index(False)] raise ValueError( f"Channel {ch_without_orig_unit} has no associated original unit." ) # Final check of orig_units, editing a unit if it is not a valid # unit orig_units = _check_orig_units(orig_units) self._orig_units = orig_units or dict() # always a dict self._projector = None self._dtype_ = dtype self.set_annotations(None) self._cropped_samp = first_samps[0] # If we have True or a string, actually do the preloading if load_from_disk: self._preload_data(preload) self._init_kwargs = _get_argvalues() @verbose def apply_gradient_compensation(self, grade, verbose=None): """Apply CTF gradient compensation. .. warning:: The compensation matrices are stored with single precision, so repeatedly switching between different of compensation (e.g., 0->1->3->2) can increase numerical noise, especially if data are saved to disk in between changing grades. It is thus best to only use a single gradient compensation level in final analyses. Parameters ---------- grade : int CTF gradient compensation level. %(verbose)s Returns ------- raw : instance of Raw The modified Raw instance. Works in-place. """ grade = int(grade) current_comp = self.compensation_grade if current_comp != grade: if self.proj: raise RuntimeError( "Cannot change compensation on data where " "projectors have been applied" ) # Figure out what operator to use (varies depending on preload) from_comp = current_comp if self.preload else self._read_comp_grade comp = make_compensator(self.info, from_comp, grade) logger.info( "Compensator constructed to change %d -> %d" % (current_comp, grade) ) set_current_comp(self.info, grade) # We might need to apply it to our data now if self.preload: logger.info("Applying compensator to loaded data") lims = np.concatenate( [np.arange(0, len(self.times), 10000), [len(self.times)]] ) for start, stop in zip(lims[:-1], lims[1:]): self._data[:, start:stop] = np.dot(comp, self._data[:, start:stop]) else: self._comp = comp # store it for later use return self @property def _dtype(self): """Datatype for loading data (property so subclasses can override).""" # most classes only store real data, they won't need anything special return self._dtype_ @verbose def _read_segment( self, start=0, stop=None, sel=None, data_buffer=None, *, verbose=None ): """Read a chunk of raw data. Parameters ---------- start : int, (optional) first sample to include (first is 0). If omitted, defaults to the first sample in data. stop : int, (optional) First sample to not include. If omitted, data is included to the end. sel : array, optional Indices of channels to select. data_buffer : array or str, optional numpy array to fill with data read, must have the correct shape. If str, a np.memmap with the correct data type will be used to store the data. projector : array SSP operator to apply to the data. %(verbose)s Returns ------- data : array, [channels x samples] the data matrix (channels x samples). """ # Initial checks start = int(start) stop = self.n_times if stop is None else min([int(stop), self.n_times]) if start >= stop: raise ValueError("No data in this range") # Initialize the data and calibration vector if sel is None: n_out = self.info["nchan"] idx = slice(None) else: n_out = len(sel) idx = _convert_slice(sel) del sel assert n_out <= self.info["nchan"] data_shape = (n_out, stop - start) dtype = self._dtype if isinstance(data_buffer, np.ndarray): if data_buffer.shape != data_shape: raise ValueError( f"data_buffer has incorrect shape: " f"{data_buffer.shape} != {data_shape}" ) data = data_buffer else: data = _allocate_data(data_buffer, data_shape, dtype) # deal with having multiple files accessed by the raw object cumul_lens = np.concatenate(([0], np.array(self._raw_lengths, dtype="int"))) cumul_lens = np.cumsum(cumul_lens) files_used = np.logical_and( np.less(start, cumul_lens[1:]), np.greater_equal(stop - 1, cumul_lens[:-1]) ) # set up cals and mult (cals, compensation, and projector) n_out = len(np.arange(len(self.ch_names))[idx]) cals = self._cals.ravel() projector, comp = self._projector, self._comp if comp is not None: mult = comp if projector is not None: mult = projector @ mult else: mult = projector del projector, comp if mult is None: cals = cals[idx, np.newaxis] assert cals.shape == (n_out, 1) need_idx = idx # sufficient just to read the given channels else: mult = mult[idx] * cals cals = None # shouldn't be used assert mult.shape == (n_out, len(self.ch_names)) # read all necessary for proj need_idx = np.where(np.any(mult, axis=0))[0] mult = mult[:, need_idx] logger.debug( f"Reading {len(need_idx)}/{len(self.ch_names)} channels " f"due to projection" ) assert (mult is None) ^ (cals is None) # xor # read from necessary files offset = 0 for fi in np.nonzero(files_used)[0]: start_file = self._first_samps[fi] # first iteration (only) could start in the middle somewhere if offset == 0: start_file += start - cumul_lens[fi] stop_file = np.min( [ stop - cumul_lens[fi] + self._first_samps[fi], self._last_samps[fi] + 1, ] ) if start_file < self._first_samps[fi] or stop_file < start_file: raise ValueError("Bad array indexing, could be a bug") n_read = stop_file - start_file this_sl = slice(offset, offset + n_read) # reindex back to original file orig_idx = _convert_slice(self._read_picks[fi][need_idx]) _ReadSegmentFileProtector(self)._read_segment_file( data[:, this_sl], orig_idx, fi, int(start_file), int(stop_file), cals, mult, ) offset += n_read return data def _read_segment_file(self, data, idx, fi, start, stop, cals, mult): """Read a segment of data from a file. Only needs to be implemented for readers that support ``preload=False``. Any implementation should only make use of: - self._raw_extras[fi] - self._filenames[fi] So be sure to store any information necessary for reading raw data in self._raw_extras[fi]. Things like ``info`` can be decoupled from the original data (e.g., different subsets of channels) due to picking before preload, for example. Parameters ---------- data : ndarray, shape (n_out, stop - start + 1) The data array. Should be modified inplace. idx : ndarray | slice The requested channel indices. fi : int The file index that must be read from. start : int The start sample in the given file. stop : int The stop sample in the given file (inclusive). cals : ndarray, shape (len(idx), 1) Channel calibrations (already sub-indexed). mult : ndarray, shape (n_out, len(idx) | None The compensation + projection + cals matrix, if applicable. """ raise NotImplementedError def _check_bad_segment( self, start, stop, picks, reject_start, reject_stop, reject_by_annotation=False ): """Check if data segment is bad. If the slice is good, returns the data in desired range. If rejected based on annotation, returns description of the bad segment as a string. Parameters ---------- start : int First sample of the slice. stop : int End of the slice. picks : array of int Channel picks. reject_start : int First sample to check for overlaps with bad annotations. reject_stop : int Last sample to check for overlaps with bad annotations. reject_by_annotation : bool Whether to perform rejection based on annotations. False by default. Returns ------- data : array | str Data in the desired range (good segment) or description of the bad segment. """ if start < 0: return None if reject_by_annotation and len(self.annotations) > 0: annot = self.annotations sfreq = self.info["sfreq"] onset = _sync_onset(self, annot.onset) overlaps = np.where(onset < reject_stop / sfreq) overlaps = np.where( onset[overlaps] + annot.duration[overlaps] > reject_start / sfreq ) for descr in annot.description[overlaps]: if descr.lower().startswith("bad"): return descr return self._getitem((picks, slice(start, stop)), return_times=False) @verbose def load_data(self, verbose=None): """Load raw data. Parameters ---------- %(verbose)s Returns ------- raw : instance of Raw The raw object with data. Notes ----- This function will load raw data if it was not already preloaded. If data were already preloaded, it will do nothing. .. versionadded:: 0.10.0 """ if not self.preload: self._preload_data(True) return self def _preload_data(self, preload): """Actually preload the data.""" data_buffer = preload if isinstance(preload, (bool, np.bool_)) and not preload: data_buffer = None logger.info( "Reading %d ... %d = %9.3f ... %9.3f secs..." % (0, len(self.times) - 1, 0.0, self.times[-1]) ) self._data = self._read_segment(data_buffer=data_buffer) assert len(self._data) == self.info["nchan"] self.preload = True self._comp = None # no longer needed self.close() @property def _first_time(self): return self.first_samp / float(self.info["sfreq"]) @property def first_samp(self): """The first data sample. See :term:`first_samp`. """ return self._cropped_samp @property def first_time(self): """The first time point (including first_samp but not meas_date).""" return self._first_time @property def last_samp(self): """The last data sample.""" return self.first_samp + sum(self._raw_lengths) - 1 @property def _last_time(self): return self.last_samp / float(self.info["sfreq"]) def time_as_index(self, times, use_rounding=False, origin=None): """Convert time to indices. Parameters ---------- times : list-like | float | int List of numbers or a number representing points in time. use_rounding : bool If True, use rounding (instead of truncation) when converting times to indices. This can help avoid non-unique indices. origin : datetime | float | int | None Time reference for times. If None, ``times`` are assumed to be relative to :term:`first_samp`. .. versionadded:: 0.17.0 Returns ------- index : ndarray Indices relative to :term:`first_samp` corresponding to the times supplied. """ origin = _handle_meas_date(origin) if origin is None: delta = 0 elif self.info["meas_date"] is None: raise ValueError( f'origin must be None when info["meas_date"] is None, got {origin}' ) else: first_samp_in_abs_time = self.info["meas_date"] + timedelta( 0, self._first_time ) delta = (origin - first_samp_in_abs_time).total_seconds() times = np.atleast_1d(times) + delta return super().time_as_index(times, use_rounding) @property def _raw_lengths(self): return [ last - first + 1 for first, last in zip(self._first_samps, self._last_samps) ] @property def annotations(self): # noqa: D401 """:class:`~mne.Annotations` for marking segments of data.""" return self._annotations @property def filenames(self): """The filenames used.""" return tuple(self._filenames) @verbose def set_annotations( self, annotations, emit_warning=True, on_missing="raise", *, verbose=None ): """Setter for annotations. This setter checks if they are inside the data range. Parameters ---------- annotations : instance of mne.Annotations | None Annotations to set. If None, the annotations is defined but empty. %(emit_warning)s The default is True. %(on_missing_ch_names)s %(verbose)s Returns ------- self : instance of Raw The raw object with annotations. """ meas_date = _handle_meas_date(self.info["meas_date"]) if annotations is None: self._annotations = Annotations([], [], [], meas_date) else: _validate_type(annotations, Annotations, "annotations") if meas_date is None and annotations.orig_time is not None: raise RuntimeError( "Ambiguous operation. Setting an Annotation" " object with known ``orig_time`` to a raw" " object which has ``meas_date`` set to" " None is ambiguous. Please, either set a" " meaningful ``meas_date`` to the raw" " object; or set ``orig_time`` to None in" " which case the annotation onsets would be" " taken in reference to the first sample of" " the raw object." ) delta = 1.0 / self.info["sfreq"] new_annotations = annotations.copy() new_annotations._prune_ch_names(self.info, on_missing) if annotations.orig_time is None: new_annotations.crop( 0, self.times[-1] + delta, emit_warning=emit_warning ) new_annotations.onset += self._first_time else: tmin = meas_date + timedelta(0, self._first_time) tmax = tmin + timedelta(seconds=self.times[-1] + delta) new_annotations.crop(tmin=tmin, tmax=tmax, emit_warning=emit_warning) new_annotations.onset -= ( meas_date - new_annotations.orig_time ).total_seconds() new_annotations._orig_time = meas_date self._annotations = new_annotations return self def __del__(self): # noqa: D105 # remove file for memmap if hasattr(self, "_data") and getattr(self._data, "filename", None) is not None: # First, close the file out; happens automatically on del filename = self._data.filename del self._data # Now file can be removed try: os.remove(filename) except OSError: pass # ignore file that no longer exists def __enter__(self): """Entering with block.""" return self def __exit__(self, exception_type, exception_val, trace): """Exit with block.""" try: self.close() except Exception: return exception_type, exception_val, trace def _parse_get_set_params(self, item): """Parse the __getitem__ / __setitem__ tuples.""" # make sure item is a tuple if not isinstance(item, tuple): # only channel selection passed item = (item, slice(None, None, None)) if len(item) != 2: # should be channels and time instants raise RuntimeError( "Unable to access raw data (need both channels and time)" ) sel = _picks_to_idx(self.info, item[0]) if isinstance(item[1], slice): time_slice = item[1] start, stop, step = (time_slice.start, time_slice.stop, time_slice.step) else: item1 = item[1] # Let's do automated type conversion to integer here if np.array(item[1]).dtype.kind == "i": item1 = int(item1) if isinstance(item1, (int, np.integer)): start, stop, step = item1, item1 + 1, 1 # Need to special case -1, because -1:0 will be empty if start == -1: stop = None else: raise ValueError("Must pass int or slice to __getitem__") if start is None: start = 0 if step is not None and step != 1: raise ValueError("step needs to be 1 : %d given" % step) if isinstance(sel, (int, np.integer)): sel = np.array([sel]) if sel is not None and len(sel) == 0: raise ValueError("Empty channel list") return sel, start, stop def __getitem__(self, item): """Get raw data and times. Parameters ---------- item : tuple or array-like See below for use cases. Returns ------- data : ndarray, shape (n_channels, n_times) The raw data. times : ndarray, shape (n_times,) The times associated with the data. Examples -------- Generally raw data is accessed as:: >>> data, times = raw[picks, time_slice] # doctest: +SKIP To get all data, you can thus do either of:: >>> data, times = raw[:] # doctest: +SKIP Which will be equivalent to: >>> data, times = raw[:, :] # doctest: +SKIP To get only the good MEG data from 10-20 seconds, you could do:: >>> picks = mne.pick_types(raw.info, meg=True, exclude='bads') # doctest: +SKIP >>> t_idx = raw.time_as_index([10., 20.]) # doctest: +SKIP >>> data, times = raw[picks, t_idx[0]:t_idx[1]] # doctest: +SKIP """ # noqa: E501 return self._getitem(item) def _getitem(self, item, return_times=True): sel, start, stop = self._parse_get_set_params(item) if self.preload: data = self._data[sel, start:stop] else: data = self._read_segment(start=start, stop=stop, sel=sel) if return_times: # Rather than compute the entire thing just compute the subset # times = self.times[start:stop] # stop can be None here so don't use it directly times = np.arange(start, start + data.shape[1], dtype=float) times /= self.info["sfreq"] return data, times else: return data def __setitem__(self, item, value): """Set raw data content.""" _check_preload(self, "Modifying data of Raw") sel, start, stop = self._parse_get_set_params(item) # set the data self._data[sel, start:stop] = value @verbose def get_data( self, picks=None, start=0, stop=None, reject_by_annotation=None, return_times=False, units=None, *, tmin=None, tmax=None, verbose=None, ): """Get data in the given range. Parameters ---------- %(picks_all)s start : int The first sample to include. Defaults to 0. stop : int | None End sample (first not to include). If None (default), the end of the data is used. reject_by_annotation : None | 'omit' | 'NaN' Whether to reject by annotation. If None (default), no rejection is done. If 'omit', segments annotated with description starting with 'bad' are omitted. If 'NaN', the bad samples are filled with NaNs. return_times : bool Whether to return times as well. Defaults to False. %(units)s tmin : int | float | None Start time of data to get in seconds. The ``tmin`` parameter is ignored if the ``start`` parameter is bigger than 0. .. versionadded:: 0.24.0 tmax : int | float | None End time of data to get in seconds. The ``tmax`` parameter is ignored if the ``stop`` parameter is defined. .. versionadded:: 0.24.0 %(verbose)s Returns ------- data : ndarray, shape (n_channels, n_times) Copy of the data in the given range. times : ndarray, shape (n_times,) Times associated with the data samples. Only returned if return_times=True. Notes ----- .. versionadded:: 0.14.0 """ # validate types _validate_type(start, types=("int-like"), item_name="start", type_name="int") _validate_type( stop, types=("int-like", None), item_name="stop", type_name="int, None" ) picks = _picks_to_idx(self.info, picks, "all", exclude=()) # Get channel factors for conversion into specified unit # (vector of ones if no conversion needed) if units is not None: ch_factors = _get_ch_factors(self, units, picks) # convert to ints picks = np.atleast_1d(np.arange(self.info["nchan"])[picks]) # handle start/tmin stop/tmax tmin_start, tmax_stop = self._handle_tmin_tmax(tmin, tmax) # tmin/tmax are ignored if start/stop are defined to # something other than their defaults start = tmin_start if start == 0 else start stop = tmax_stop if stop is None else stop # truncate start/stop to the open interval [0, n_times] start = min(max(0, start), self.n_times) stop = min(max(0, stop), self.n_times) if len(self.annotations) == 0 or reject_by_annotation is None: getitem = self._getitem( (picks, slice(start, stop)), return_times=return_times ) if return_times: data, times = getitem if units is not None: data *= ch_factors[:, np.newaxis] return data, times if units is not None: getitem *= ch_factors[:, np.newaxis] return getitem _check_option( "reject_by_annotation", reject_by_annotation.lower(), ["omit", "nan"] ) onsets, ends = _annotations_starts_stops(self, ["BAD"]) keep = (onsets < stop) & (ends > start) onsets = np.maximum(onsets[keep], start) ends = np.minimum(ends[keep], stop) if len(onsets) == 0: data, times = self[picks, start:stop] if units is not None: data *= ch_factors[:, np.newaxis] if return_times: return data, times return data n_samples = stop - start # total number of samples used = np.ones(n_samples, bool) for onset, end in zip(onsets, ends): if onset >= end: continue used[onset - start : end - start] = False used = np.concatenate([[False], used, [False]]) starts = np.where(~used[:-1] & used[1:])[0] + start stops = np.where(used[:-1] & ~used[1:])[0] + start n_kept = (stops - starts).sum() # kept samples n_rejected = n_samples - n_kept # rejected samples if n_rejected > 0: if reject_by_annotation == "omit": msg = ( "Omitting {} of {} ({:.2%}) samples, retaining {}" " ({:.2%}) samples." ) logger.info( msg.format( n_rejected, n_samples, n_rejected / n_samples, n_kept, n_kept / n_samples, ) ) data = np.zeros((len(picks), n_kept)) times = np.zeros(data.shape[1]) idx = 0 for start, stop in zip(starts, stops): # get the data if start == stop: continue end = idx + stop - start data[:, idx:end], times[idx:end] = self[picks, start:stop] idx = end else: msg = ( "Setting {} of {} ({:.2%}) samples to NaN, retaining {}" " ({:.2%}) samples." ) logger.info( msg.format( n_rejected, n_samples, n_rejected / n_samples, n_kept, n_kept / n_samples, ) ) data, times = self[picks, start:stop] data[:, ~used[1:-1]] = np.nan else: data, times = self[picks, start:stop] if units is not None: data *= ch_factors[:, np.newaxis] if return_times: return data, times return data @verbose def apply_function( self, fun, picks=None, dtype=None, n_jobs=None, channel_wise=True, verbose=None, **kwargs, ): """Apply a function to a subset of channels. %(applyfun_summary_raw)s Parameters ---------- %(fun_applyfun)s %(picks_all_data_noref)s %(dtype_applyfun)s %(n_jobs)s Ignored if ``channel_wise=False`` as the workload is split across channels. %(channel_wise_applyfun)s .. versionadded:: 0.18 %(verbose)s %(kwargs_fun)s Returns ------- self : instance of Raw The raw object with transformed data. """ _check_preload(self, "raw.apply_function") picks = _picks_to_idx(self.info, picks, exclude=(), with_ref_meg=False) if not callable(fun): raise ValueError("fun needs to be a function") data_in = self._data if dtype is not None and dtype != self._data.dtype: self._data = self._data.astype(dtype) args = getfullargspec(fun).args + getfullargspec(fun).kwonlyargs if channel_wise is False: if ("ch_idx" in args) or ("ch_name" in args): raise ValueError( "apply_function cannot access ch_idx or ch_name " "when channel_wise=False" ) if "ch_idx" in args: logger.info("apply_function requested to access ch_idx") if "ch_name" in args: logger.info("apply_function requested to access ch_name") if channel_wise: parallel, p_fun, n_jobs = parallel_func(_check_fun, n_jobs) if n_jobs == 1: # modify data inplace to save memory for ch_idx in picks: if "ch_idx" in args: kwargs.update(ch_idx=ch_idx) if "ch_name" in args: kwargs.update(ch_name=self.info["ch_names"][ch_idx]) self._data[ch_idx, :] = _check_fun( fun, data_in[ch_idx, :], **kwargs ) else: # use parallel function data_picks_new = parallel( p_fun( fun, data_in[ch_idx], **kwargs, **{ k: v for k, v in [ ("ch_name", self.info["ch_names"][ch_idx]), ("ch_idx", ch_idx), ] if k in args }, ) for ch_idx in picks ) for run_idx, ch_idx in enumerate(picks): self._data[ch_idx, :] = data_picks_new[run_idx] else: self._data[picks, :] = _check_fun(fun, data_in[picks, :], **kwargs) return self # Need a separate method because the default pad is different for raw @copy_doc(FilterMixin.filter) def filter( self, l_freq, h_freq, picks=None, filter_length="auto", l_trans_bandwidth="auto", h_trans_bandwidth="auto", n_jobs=None, method="fir", iir_params=None, phase="zero", fir_window="hamming", fir_design="firwin", skip_by_annotation=("edge", "bad_acq_skip"), pad="reflect_limited", verbose=None, ): return super().filter( l_freq, h_freq, picks, filter_length, l_trans_bandwidth, h_trans_bandwidth, n_jobs=n_jobs, method=method, iir_params=iir_params, phase=phase, fir_window=fir_window, fir_design=fir_design, skip_by_annotation=skip_by_annotation, pad=pad, verbose=verbose, ) @verbose def notch_filter( self, freqs, picks=None, filter_length="auto", notch_widths=None, trans_bandwidth=1.0, n_jobs=None, method="fir", iir_params=None, mt_bandwidth=None, p_value=0.05, phase="zero", fir_window="hamming", fir_design="firwin", pad="reflect_limited", skip_by_annotation=("edge", "bad_acq_skip"), verbose=None, ): """Notch filter a subset of channels. Parameters ---------- freqs : float | array of float | None Specific frequencies to filter out from data, e.g., ``np.arange(60, 241, 60)`` in the US or ``np.arange(50, 251, 50)`` in Europe. ``None`` can only be used with the mode ``'spectrum_fit'``, where an F test is used to find sinusoidal components. %(picks_all_data)s %(filter_length_notch)s notch_widths : float | array of float | None Width of each stop band (centred at each freq in freqs) in Hz. If None, ``freqs / 200`` is used. trans_bandwidth : float Width of the transition band in Hz. Only used for ``method='fir'`` and ``method='iir'``. %(n_jobs_fir)s %(method_fir)s %(iir_params)s mt_bandwidth : float | None The bandwidth of the multitaper windowing function in Hz. Only used in 'spectrum_fit' mode. p_value : float P-value to use in F-test thresholding to determine significant sinusoidal components to remove when ``method='spectrum_fit'`` and ``freqs=None``. Note that this will be Bonferroni corrected for the number of frequencies, so large p-values may be justified. %(phase)s %(fir_window)s %(fir_design)s %(pad_fir)s The default is ``'reflect_limited'``. .. versionadded:: 0.15 %(skip_by_annotation)s %(verbose)s Returns ------- raw : instance of Raw The raw instance with filtered data. See Also -------- mne.filter.notch_filter mne.io.Raw.filter Notes ----- Applies a zero-phase notch filter to the channels selected by "picks". By default the data of the Raw object is modified inplace. The Raw object has to have the data loaded e.g. with ``preload=True`` or ``self.load_data()``. .. note:: If n_jobs > 1, more memory is required as ``len(picks) * n_times`` additional time points need to be temporarily stored in memory. For details, see :func:`mne.filter.notch_filter`. """ fs = float(self.info["sfreq"]) picks = _picks_to_idx(self.info, picks, exclude=(), none="data_or_ica") _check_preload(self, "raw.notch_filter") onsets, ends = _annotations_starts_stops(self, skip_by_annotation, invert=True) logger.info( "Filtering raw data in %d contiguous segment%s" % (len(onsets), _pl(onsets)) ) for si, (start, stop) in enumerate(zip(onsets, ends)): notch_filter( self._data[:, start:stop], fs, freqs, filter_length=filter_length, notch_widths=notch_widths, trans_bandwidth=trans_bandwidth, method=method, iir_params=iir_params, mt_bandwidth=mt_bandwidth, p_value=p_value, picks=picks, n_jobs=n_jobs, copy=False, phase=phase, fir_window=fir_window, fir_design=fir_design, pad=pad, ) return self @verbose def resample( self, sfreq, *, npad="auto", window="auto", stim_picks=None, n_jobs=None, events=None, pad="auto", method="fft", verbose=None, ): """Resample all channels. If appropriate, an anti-aliasing filter is applied before resampling. See :ref:`resampling-and-decimating` for more information. .. warning:: The intended purpose of this function is primarily to speed up computations (e.g., projection calculation) when precise timing of events is not required, as downsampling raw data effectively jitters trigger timings. It is generally recommended not to epoch downsampled data, but instead epoch and then downsample, as epoching downsampled data jitters triggers. For more, see `this illustrative gist `_. If resampling the continuous data is desired, it is recommended to construct events using the original data. The event onsets can be jointly resampled with the raw data using the 'events' parameter (a resampled copy is returned). Parameters ---------- sfreq : float New sample rate to use. %(npad_resample)s %(window_resample)s stim_picks : list of int | None Stim channels. These channels are simply subsampled or supersampled (without applying any filtering). This reduces resampling artifacts in stim channels, but may lead to missing triggers. If None, stim channels are automatically chosen using :func:`mne.pick_types`. %(n_jobs_cuda)s events : 2D array, shape (n_events, 3) | None An optional event matrix. When specified, the onsets of the events are resampled jointly with the data. NB: The input events are not modified, but a new array is returned with the raw instead. %(pad_resample_auto)s .. versionadded:: 0.15 %(method_resample)s .. versionadded:: 1.7 %(verbose)s Returns ------- raw : instance of Raw The resampled version of the raw object. events : array, shape (n_events, 3) | None If events are jointly resampled, these are returned with the raw. See Also -------- mne.io.Raw.filter mne.Epochs.resample Notes ----- For some data, it may be more accurate to use ``npad=0`` to reduce artifacts. This is dataset dependent -- check your data! For optimum performance and to make use of ``n_jobs > 1``, the raw object has to have the data loaded e.g. with ``preload=True`` or ``self.load_data()``, but this increases memory requirements. The resulting raw object will have the data loaded into memory. """ sfreq = float(sfreq) o_sfreq = float(self.info["sfreq"]) if _check_resamp_noop(sfreq, o_sfreq): return self # When no event object is supplied, some basic detection of dropped # events is performed to generate a warning. Finding events can fail # for a variety of reasons, e.g. if no stim channel is present or it is # corrupted. This should not stop the resampling from working. The # warning should simply not be generated in this case. if events is None: try: original_events = find_events(self) except Exception: pass offsets = np.concatenate(([0], np.cumsum(self._raw_lengths))) # set up stim channel processing if stim_picks is None: stim_picks = pick_types( self.info, meg=False, ref_meg=False, stim=True, exclude=[] ) else: stim_picks = _picks_to_idx( self.info, stim_picks, exclude=(), with_ref_meg=False ) kwargs = dict( up=sfreq, down=o_sfreq, npad=npad, window=window, n_jobs=n_jobs, pad=pad, method=method, ) ratio, n_news = zip( *( _resamp_ratio_len(sfreq, o_sfreq, old_len) for old_len in self._raw_lengths ) ) ratio, n_news = ratio[0], np.array(n_news, int) new_offsets = np.cumsum([0] + list(n_news)) if self.preload: new_data = np.empty((len(self.ch_names), new_offsets[-1]), self._data.dtype) for ri, (n_orig, n_new) in enumerate(zip(self._raw_lengths, n_news)): this_sl = slice(new_offsets[ri], new_offsets[ri + 1]) if self.preload: data_chunk = self._data[:, offsets[ri] : offsets[ri + 1]] new_data[:, this_sl] = resample(data_chunk, **kwargs) # In empirical testing, it was faster to resample all channels # (above) and then replace the stim channels than it was to # only resample the proper subset of channels and then use # np.insert() to restore the stims. if len(stim_picks) > 0: new_data[stim_picks, this_sl] = _resample_stim_channels( data_chunk[stim_picks], n_new, data_chunk.shape[1] ) else: # this will not be I/O efficient, but will be mem efficient for ci in range(len(self.ch_names)): data_chunk = self.get_data( ci, offsets[ri], offsets[ri + 1], verbose="error" )[0] if ci == 0 and ri == 0: new_data = np.empty( (len(self.ch_names), new_offsets[-1]), data_chunk.dtype ) if ci in stim_picks: resamp = _resample_stim_channels( data_chunk, n_new, data_chunk.shape[-1] )[0] else: resamp = resample(data_chunk, **kwargs) new_data[ci, this_sl] = resamp self._cropped_samp = int(np.round(self._cropped_samp * ratio)) self._first_samps = np.round(self._first_samps * ratio).astype(int) self._last_samps = np.array(self._first_samps) + n_news - 1 self._raw_lengths[ri] = list(n_news) assert np.array_equal(n_news, self._last_samps - self._first_samps + 1) self._data = new_data self.preload = True lowpass = self.info.get("lowpass") lowpass = np.inf if lowpass is None else lowpass with self.info._unlock(): self.info["lowpass"] = min(lowpass, sfreq / 2.0) self.info["sfreq"] = sfreq # See the comment above why we ignore all errors here. if events is None: try: # Did we loose events? resampled_events = find_events(self) if len(resampled_events) != len(original_events): warn( "Resampling of the stim channels caused event " "information to become unreliable. Consider finding " "events on the original data and passing the event " "matrix as a parameter." ) except Exception: pass return self else: # always make a copy of events events = events.copy() events[:, 0] = np.minimum( np.round(events[:, 0] * ratio).astype(int), self._data.shape[1] + self.first_samp - 1, ) return self, events @verbose def crop(self, tmin=0.0, tmax=None, include_tmax=True, *, verbose=None): """Crop raw data file. Limit the data from the raw file to go between specific times. Note that the new ``tmin`` is assumed to be ``t=0`` for all subsequently called functions (e.g., :meth:`~mne.io.Raw.time_as_index`, or :class:`~mne.Epochs`). New :term:`first_samp` and :term:`last_samp` are set accordingly. Thus function operates in-place on the instance. Use :meth:`mne.io.Raw.copy` if operation on a copy is desired. Parameters ---------- %(tmin_raw)s %(tmax_raw)s %(include_tmax)s %(verbose)s Returns ------- raw : instance of Raw The cropped raw object, modified in-place. """ max_time = (self.n_times - 1) / self.info["sfreq"] if tmax is None: tmax = max_time if tmin > tmax: raise ValueError(f"tmin ({tmin}) must be less than tmax ({tmax})") if tmin < 0.0: raise ValueError(f"tmin ({tmin}) must be >= 0") elif tmax - int(not include_tmax) / self.info["sfreq"] > max_time: raise ValueError( f"tmax ({tmax}) must be less than or equal to the max " f"time ({max_time:0.4f} s)" ) smin, smax = np.where( _time_mask( self.times, tmin, tmax, sfreq=self.info["sfreq"], include_tmax=include_tmax, ) )[0][[0, -1]] cumul_lens = np.concatenate(([0], np.array(self._raw_lengths, dtype="int"))) cumul_lens = np.cumsum(cumul_lens) keepers = np.logical_and( np.less(smin, cumul_lens[1:]), np.greater_equal(smax, cumul_lens[:-1]) ) keepers = np.where(keepers)[0] # if we drop file(s) from the beginning, we need to keep track of # how many samples we dropped relative to that one self._cropped_samp += smin self._first_samps = np.atleast_1d(self._first_samps[keepers]) # Adjust first_samp of first used file! self._first_samps[0] += smin - cumul_lens[keepers[0]] self._last_samps = np.atleast_1d(self._last_samps[keepers]) self._last_samps[-1] -= cumul_lens[keepers[-1] + 1] - 1 - smax self._read_picks = [self._read_picks[ri] for ri in keepers] assert all(len(r) == len(self._read_picks[0]) for r in self._read_picks) self._raw_extras = [self._raw_extras[ri] for ri in keepers] self._filenames = [self._filenames[ri] for ri in keepers] if self.preload: # slice and copy to avoid the reference to large array self._data = self._data[:, smin : smax + 1].copy() annotations = self.annotations # now call setter to filter out annotations outside of interval if annotations.orig_time is None: assert self.info["meas_date"] is None # When self.info['meas_date'] is None (which is guaranteed if # self.annotations.orig_time is None), when we do the # self.set_annotations, it's assumed that the annotations onset # are relative to first_time, so we have to subtract it, then # set_annotations will put it back. annotations.onset -= self.first_time self.set_annotations(annotations, False) return self @verbose def crop_by_annotations(self, annotations=None, *, verbose=None): """Get crops of raw data file for selected annotations. Parameters ---------- annotations : instance of Annotations | None The annotations to use for cropping the raw file. If None, the annotations from the instance are used. %(verbose)s Returns ------- raws : list The cropped raw objects. """ if annotations is None: annotations = self.annotations raws = [] for annot in annotations: onset = annot["onset"] - self.first_time # be careful about near-zero errors (crop is very picky about this, # e.g., -1e-8 is an error) if -self.info["sfreq"] / 2 < onset < 0: onset = 0 raw_crop = self.copy().crop(onset, onset + annot["duration"]) raws.append(raw_crop) return raws @verbose def save( self, fname, picks=None, tmin=0, tmax=None, buffer_size_sec=None, drop_small_buffer=False, proj=False, fmt="single", overwrite=False, split_size="2GB", split_naming="neuromag", verbose=None, ): """Save raw data to file. Parameters ---------- fname : path-like File name of the new dataset. This has to be a new filename unless data have been preloaded. Filenames should end with ``raw.fif`` (common raw data), ``raw_sss.fif`` (Maxwell-filtered continuous data), ``raw_tsss.fif`` (temporally signal-space-separated data), ``_meg.fif`` (common MEG data), ``_eeg.fif`` (common EEG data), or ``_ieeg.fif`` (common intracranial EEG data). You may also append an additional ``.gz`` suffix to enable gzip compression. %(picks_all)s %(tmin_raw)s %(tmax_raw)s buffer_size_sec : float | None Size of data chunks in seconds. If None (default), the buffer size of the original file is used. drop_small_buffer : bool Drop or not the last buffer. It is required by maxfilter (SSS) that only accepts raw files with buffers of the same size. proj : bool If True the data is saved with the projections applied (active). .. note:: If ``apply_proj()`` was used to apply the projections, the projectons will be active even if ``proj`` is False. fmt : 'single' | 'double' | 'int' | 'short' Format to use to save raw data. Valid options are 'double', 'single', 'int', and 'short' for 64- or 32-bit float, or 32- or 16-bit integers, respectively. It is **strongly** recommended to use 'single', as this is backward-compatible, and is standard for maintaining precision. Note that using 'short' or 'int' may result in loss of precision, complex data cannot be saved as 'short', and neither complex data types nor real data stored as 'double' can be loaded with the MNE command-line tools. See raw.orig_format to determine the format the original data were stored in. %(overwrite)s To overwrite original file (the same one that was loaded), data must be preloaded upon reading. split_size : str | int Large raw files are automatically split into multiple pieces. This parameter specifies the maximum size of each piece. If the parameter is an integer, it specifies the size in Bytes. It is also possible to pass a human-readable string, e.g., 100MB. .. note:: Due to FIFF file limitations, the maximum split size is 2GB. %(split_naming)s .. versionadded:: 0.17 %(verbose)s Notes ----- If Raw is a concatenation of several raw files, **be warned** that only the measurement information from the first raw file is stored. This likely means that certain operations with external tools may not work properly on a saved concatenated file (e.g., probably some or all forms of SSS). It is recommended not to concatenate and then save raw files for this reason. Samples annotated ``BAD_ACQ_SKIP`` are not stored in order to optimize memory. Whatever values, they will be loaded as 0s when reading file. """ endings = ( "raw.fif", "raw_sss.fif", "raw_tsss.fif", "_meg.fif", "_eeg.fif", "_ieeg.fif", ) endings += tuple([f"{e}.gz" for e in endings]) endings_err = (".fif", ".fif.gz") # convert to str, check for overwrite a few lines later fname = _check_fname( fname, overwrite=True, verbose="error", check_bids_split=True, name="fname", ) check_fname(fname, "raw", endings, endings_err=endings_err) split_size = _get_split_size(split_size) if not self.preload and str(fname) in self._filenames: raise ValueError( "You cannot save data to the same file." " Please use a different filename." ) if self.preload: if np.iscomplexobj(self._data): warn( "Saving raw file with complex data. Loading with " "command-line MNE tools will not work." ) data_test = self[0, 0][0] if fmt == "short" and np.iscomplexobj(data_test): raise ValueError( 'Complex data must be saved as "single" or "double", not "short"' ) # check for file existence and expand `~` if present fname = _check_fname(fname=fname, overwrite=overwrite, verbose="error") if proj: info = deepcopy(self.info) projector, info = setup_proj(info) activate_proj(info["projs"], copy=False) else: info = self.info projector = None # # Set up the reading parameters # # Convert to samples start, stop = self._tmin_tmax_to_start_stop(tmin, tmax) buffer_size = self._get_buffer_size(buffer_size_sec) # write the raw file _validate_type(split_naming, str, "split_naming") _check_option("split_naming", split_naming, ("neuromag", "bids")) cfg = _RawFidWriterCfg(buffer_size, split_size, drop_small_buffer, fmt) raw_fid_writer = _RawFidWriter(self, info, picks, projector, start, stop, cfg) _write_raw(raw_fid_writer, fname, split_naming, overwrite) @verbose def export( self, fname, fmt="auto", physical_range="auto", add_ch_type=False, *, overwrite=False, verbose=None, ): """Export Raw to external formats. %(export_fmt_support_raw)s %(export_warning)s Parameters ---------- %(fname_export_params)s %(export_fmt_params_raw)s %(physical_range_export_params)s %(add_ch_type_export_params)s %(overwrite)s .. versionadded:: 0.24.1 %(verbose)s Notes ----- .. versionadded:: 0.24 %(export_warning_note_raw)s %(export_eeglab_note)s %(export_edf_note)s """ from ..export import export_raw export_raw( fname, self, fmt, physical_range=physical_range, add_ch_type=add_ch_type, overwrite=overwrite, verbose=verbose, ) def _tmin_tmax_to_start_stop(self, tmin, tmax): start = int(np.floor(tmin * self.info["sfreq"])) # "stop" is the first sample *not* to save, so we need +1's here if tmax is None: stop = np.inf else: stop = self.time_as_index(float(tmax), use_rounding=True)[0] + 1 stop = min(stop, self.last_samp - self.first_samp + 1) if stop <= start or stop <= 0: raise ValueError(f"tmin ({tmin}) and tmax ({tmax}) yielded no samples") return start, stop @copy_function_doc_to_method_doc(plot_raw) def plot( self, events=None, duration=10.0, start=0.0, n_channels=20, bgcolor="w", color=None, bad_color="lightgray", event_color="cyan", scalings=None, remove_dc=True, order=None, show_options=False, title=None, show=True, block=False, highpass=None, lowpass=None, filtorder=4, clipping=_RAW_CLIP_DEF, show_first_samp=False, proj=True, group_by="type", butterfly=False, decim="auto", noise_cov=None, event_id=None, show_scrollbars=True, show_scalebars=True, time_format="float", precompute=None, use_opengl=None, *, picks=None, theme=None, overview_mode=None, splash=True, verbose=None, ): return plot_raw( self, events, duration, start, n_channels, bgcolor, color, bad_color, event_color, scalings, remove_dc, order, show_options, title, show, block, highpass, lowpass, filtorder, clipping, show_first_samp, proj, group_by, butterfly, decim, noise_cov=noise_cov, event_id=event_id, show_scrollbars=show_scrollbars, show_scalebars=show_scalebars, time_format=time_format, precompute=precompute, use_opengl=use_opengl, picks=picks, theme=theme, overview_mode=overview_mode, splash=splash, verbose=verbose, ) @property def ch_names(self): """Channel names.""" return self.info["ch_names"] @property def times(self): """Time points.""" out = _arange_div(self.n_times, float(self.info["sfreq"])) out.flags["WRITEABLE"] = False return out @property def n_times(self): """Number of time points.""" return self.last_samp - self.first_samp + 1 def __len__(self): """Return the number of time points. Returns ------- len : int The number of time points. Examples -------- This can be used as:: >>> len(raw) # doctest: +SKIP 1000 """ return self.n_times @verbose def load_bad_channels(self, bad_file=None, force=False, verbose=None): """Mark channels as bad from a text file. This function operates mostly in the style of the C function ``mne_mark_bad_channels``. Each line in the text file will be interpreted as a name of a bad channel. Parameters ---------- bad_file : path-like | None File name of the text file containing bad channels. If ``None`` (default), bad channels are cleared, but this is more easily done directly with ``raw.info['bads'] = []``. force : bool Whether or not to force bad channel marking (of those that exist) if channels are not found, instead of raising an error. Defaults to ``False``. %(verbose)s """ prev_bads = self.info["bads"] new_bads = [] if bad_file is not None: # Check to make sure bad channels are there names = frozenset(self.info["ch_names"]) with open(bad_file) as fid: bad_names = [line for line in fid.read().splitlines() if line] new_bads = [ci for ci in bad_names if ci in names] count_diff = len(bad_names) - len(new_bads) if count_diff > 0: msg = ( f"{count_diff} bad channel(s) from:" f"\n{bad_file}\nnot found in:\n{self.filenames[0]}" ) if not force: raise ValueError(msg) else: warn(msg) if prev_bads != new_bads: logger.info(f"Updating bad channels: {prev_bads} -> {new_bads}") self.info["bads"] = new_bads else: logger.info(f"No channels updated. Bads are: {prev_bads}") @fill_doc def append(self, raws, preload=None): """Concatenate raw instances as if they were continuous. .. note:: Boundaries of the raw files are annotated bad. If you wish to use the data as continuous recording, you can remove the boundary annotations after concatenation (see :meth:`mne.Annotations.delete`). Parameters ---------- raws : list, or Raw instance List of Raw instances to concatenate to the current instance (in order), or a single raw instance to concatenate. %(preload_concatenate)s """ if not isinstance(raws, list): raws = [raws] # make sure the raws are compatible all_raws = [self] all_raws += raws _check_raw_compatibility(all_raws) # deal with preloading data first (while files are separate) all_preloaded = self.preload and all(r.preload for r in raws) if preload is None: if all_preloaded: preload = True else: preload = False if preload is False: if self.preload: self._data = None self.preload = False else: # do the concatenation ourselves since preload might be a string nchan = self.info["nchan"] c_ns = np.cumsum([rr.n_times for rr in ([self] + raws)]) nsamp = c_ns[-1] if not self.preload: this_data = self._read_segment() else: this_data = self._data # allocate the buffer _data = _allocate_data(preload, (nchan, nsamp), this_data.dtype) _data[:, 0 : c_ns[0]] = this_data for ri in range(len(raws)): if not raws[ri].preload: # read the data directly into the buffer data_buffer = _data[:, c_ns[ri] : c_ns[ri + 1]] raws[ri]._read_segment(data_buffer=data_buffer) else: _data[:, c_ns[ri] : c_ns[ri + 1]] = raws[ri]._data self._data = _data self.preload = True # now combine information from each raw file to construct new self annotations = self.annotations assert annotations.orig_time == self.info["meas_date"] edge_samps = list() for ri, r in enumerate(raws): n_samples = self.last_samp - self.first_samp + 1 annotations = _combine_annotations( annotations, r.annotations, n_samples, self.first_samp, r.first_samp, self.info["sfreq"], ) edge_samps.append(sum(self._last_samps) - sum(self._first_samps) + (ri + 1)) self._first_samps = np.r_[self._first_samps, r._first_samps] self._last_samps = np.r_[self._last_samps, r._last_samps] self._read_picks += r._read_picks self._raw_extras += r._raw_extras self._filenames += r._filenames assert annotations.orig_time == self.info["meas_date"] # The above _combine_annotations gets everything synchronized to # first_samp. set_annotations (with no absolute time reference) assumes # that the annotations being set are relative to first_samp, and will # add it back on. So here we have to remove it: if annotations.orig_time is None: annotations.onset -= self.first_samp / self.info["sfreq"] self.set_annotations(annotations) for edge_samp in edge_samps: onset = _sync_onset(self, (edge_samp) / self.info["sfreq"], True) self.annotations.append(onset, 0.0, "BAD boundary") self.annotations.append(onset, 0.0, "EDGE boundary") if not ( len(self._first_samps) == len(self._last_samps) == len(self._raw_extras) == len(self._filenames) == len(self._read_picks) ): raise RuntimeError("Append error") # should never happen def close(self): """Clean up the object. Does nothing for objects that close their file descriptors. Things like Raw will override this method. """ pass # noqa def copy(self): """Return copy of Raw instance. Returns ------- inst : instance of Raw A copy of the instance. """ return deepcopy(self) def __repr__(self): # noqa: D105 name = self.filenames[0] name = "" if name is None else Path(name).name + ", " size_str = str(sizeof_fmt(self._size)) # str in case it fails -> None size_str += f", data{'' if self.preload else ' not'} loaded" s = ( f"{name}{len(self.ch_names)} x {self.n_times} " f"({self.times[-1]:0.1f} s), ~{size_str}" ) return f"<{self.__class__.__name__} | {s}>" @repr_html def _repr_html_(self): basenames = [Path(f).name for f in self._filenames if f is not None] # https://stackoverflow.com/a/10981895 duration = timedelta(seconds=self.times[-1]) hours, remainder = divmod(duration.seconds, 3600) minutes, seconds = divmod(remainder, 60) seconds += duration.microseconds / 1e6 seconds = np.ceil(seconds) # always take full seconds duration = f"{int(hours):02d}:{int(minutes):02d}:{int(seconds):02d}" raw_template = _get_html_template("repr", "raw.html.jinja") return raw_template.render( inst=self, filenames=basenames, duration=duration, ) def add_events(self, events, stim_channel=None, replace=False): """Add events to stim channel. Parameters ---------- events : ndarray, shape (n_events, 3) Events to add. The first column specifies the sample number of each event, the second column is ignored, and the third column provides the event value. If events already exist in the Raw instance at the given sample numbers, the event values will be added together. stim_channel : str | None Name of the stim channel to add to. If None, the config variable 'MNE_STIM_CHANNEL' is used. If this is not found, it will default to ``'STI 014'``. replace : bool If True the old events on the stim channel are removed before adding the new ones. Notes ----- Data must be preloaded in order to add events. """ _check_preload(self, "Adding events") events = np.asarray(events) if events.ndim != 2 or events.shape[1] != 3: raise ValueError("events must be shape (n_events, 3)") stim_channel = _get_stim_channel(stim_channel, self.info) pick = pick_channels(self.ch_names, stim_channel, ordered=False) if len(pick) == 0: raise ValueError(f"Channel {stim_channel} not found") pick = pick[0] idx = events[:, 0].astype(int) if np.any(idx < self.first_samp) or np.any(idx > self.last_samp): raise ValueError( f"event sample numbers must be between {self.first_samp} " f"and {self.last_samp}" ) if not all(idx == events[:, 0]): raise ValueError("event sample numbers must be integers") if replace: self._data[pick, :] = 0.0 self._data[pick, idx - self.first_samp] += events[:, 2] def _get_buffer_size(self, buffer_size_sec=None): """Get the buffer size.""" if buffer_size_sec is None: buffer_size_sec = self.buffer_size_sec buffer_size_sec = float(buffer_size_sec) return int(np.ceil(buffer_size_sec * self.info["sfreq"])) @verbose def compute_psd( self, method="welch", fmin=0, fmax=np.inf, tmin=None, tmax=None, picks=None, exclude=(), proj=False, remove_dc=True, reject_by_annotation=True, *, n_jobs=1, verbose=None, **method_kw, ): """Perform spectral analysis on sensor data. Parameters ---------- %(method_psd)s Note that ``"multitaper"`` cannot be used if ``reject_by_annotation=True`` and there are ``"bad_*"`` annotations in the :class:`~mne.io.Raw` data; in such cases use ``"welch"``. Default is ``'welch'``. %(fmin_fmax_psd)s %(tmin_tmax_psd)s %(picks_good_data_noref)s %(exclude_psd)s %(proj_psd)s %(remove_dc)s %(reject_by_annotation_psd)s %(n_jobs)s %(verbose)s %(method_kw_psd)s Returns ------- spectrum : instance of Spectrum The spectral representation of the data. Notes ----- .. versionadded:: 1.2 References ---------- .. footbibliography:: """ method = _validate_method(method, type(self).__name__) self._set_legacy_nfft_default(tmin, tmax, method, method_kw) return Spectrum( self, method=method, fmin=fmin, fmax=fmax, tmin=tmin, tmax=tmax, picks=picks, exclude=exclude, proj=proj, remove_dc=remove_dc, reject_by_annotation=reject_by_annotation, n_jobs=n_jobs, verbose=verbose, **method_kw, ) @verbose def compute_tfr( self, method, freqs, *, tmin=None, tmax=None, picks=None, proj=False, output="power", reject_by_annotation=True, decim=1, n_jobs=None, verbose=None, **method_kw, ): """Compute a time-frequency representation of sensor data. Parameters ---------- %(method_tfr)s %(freqs_tfr)s %(tmin_tmax_psd)s %(picks_good_data_noref)s %(proj_psd)s %(output_compute_tfr)s %(reject_by_annotation_tfr)s %(decim_tfr)s %(n_jobs)s %(verbose)s %(method_kw_tfr)s Returns ------- tfr : instance of RawTFR The time-frequency-resolved power estimates of the data. Notes ----- .. versionadded:: 1.7 References ---------- .. footbibliography:: """ _check_option("output", output, ("power", "phase", "complex")) method_kw["output"] = output return RawTFR( self, method=method, freqs=freqs, tmin=tmin, tmax=tmax, picks=picks, proj=proj, reject_by_annotation=reject_by_annotation, decim=decim, n_jobs=n_jobs, verbose=verbose, **method_kw, ) @verbose def to_data_frame( self, picks=None, index=None, scalings=None, copy=True, start=None, stop=None, long_format=False, time_format=None, *, verbose=None, ): """Export data in tabular structure as a pandas DataFrame. Channels are converted to columns in the DataFrame. By default, an additional column "time" is added, unless ``index`` is not ``None`` (in which case time values form the DataFrame's index). Parameters ---------- %(picks_all)s %(index_df_raw)s Defaults to ``None``. %(scalings_df)s %(copy_df)s start : int | None Starting sample index for creating the DataFrame from a temporal span of the Raw object. ``None`` (the default) uses the first sample. stop : int | None Ending sample index for creating the DataFrame from a temporal span of the Raw object. ``None`` (the default) uses the last sample. %(long_format_df_raw)s %(time_format_df_raw)s .. versionadded:: 0.20 %(verbose)s Returns ------- %(df_return)s """ # check pandas once here, instead of in each private utils function pd = _check_pandas_installed() # noqa # arg checking valid_index_args = ["time"] valid_time_formats = ["ms", "timedelta", "datetime"] index = _check_pandas_index_arguments(index, valid_index_args) time_format = _check_time_format( time_format, valid_time_formats, self.info["meas_date"] ) # get data picks = _picks_to_idx(self.info, picks, "all", exclude=()) data, times = self[picks, start:stop] data = data.T if copy: data = data.copy() data = _scale_dataframe_data(self, data, picks, scalings) # prepare extra columns / multiindex mindex = list() times = _convert_times( times, time_format, self.info["meas_date"], self.first_time ) mindex.append(("time", times)) # build DataFrame df = _build_data_frame( self, data, picks, long_format, mindex, index, default_index=["time"] ) return df def describe(self, data_frame=False): """Describe channels (name, type, descriptive statistics). Parameters ---------- data_frame : bool If True, return results in a pandas.DataFrame. If False, only print results. Columns 'ch', 'type', and 'unit' indicate channel index, channel type, and unit of the remaining five columns. These columns are 'min' (minimum), 'Q1' (first quartile or 25% percentile), 'median', 'Q3' (third quartile or 75% percentile), and 'max' (maximum). Returns ------- result : None | pandas.DataFrame If data_frame=False, returns None. If data_frame=True, returns results in a pandas.DataFrame (requires pandas). """ nchan = self.info["nchan"] # describe each channel cols = defaultdict(list) cols["name"] = self.ch_names for i in range(nchan): ch = self.info["chs"][i] data = self[i][0] cols["type"].append(channel_type(self.info, i)) cols["unit"].append(_unit2human[ch["unit"]]) cols["min"].append(np.min(data)) cols["Q1"].append(np.percentile(data, 25)) cols["median"].append(np.median(data)) cols["Q3"].append(np.percentile(data, 75)) cols["max"].append(np.max(data)) if data_frame: # return data frame import pandas as pd df = pd.DataFrame(cols) df.index.name = "ch" return df # convert into commonly used units scalings = _handle_default("scalings") units = _handle_default("units") for i in range(nchan): unit = units.get(cols["type"][i]) scaling = scalings.get(cols["type"][i], 1) if scaling != 1: cols["unit"][i] = unit for col in ["min", "Q1", "median", "Q3", "max"]: cols[col][i] *= scaling lens = { "ch": max(2, len(str(nchan))), "name": max(4, max([len(n) for n in cols["name"]])), "type": max(4, max([len(t) for t in cols["type"]])), "unit": max(4, max([len(u) for u in cols["unit"]])), } # print description, start with header print(self) print( f"{'ch':>{lens['ch']}} " f"{'name':<{lens['name']}} " f"{'type':<{lens['type']}} " f"{'unit':<{lens['unit']}} " f"{'min':>9} " f"{'Q1':>9} " f"{'median':>9} " f"{'Q3':>9} " f"{'max':>9}" ) # print description for each channel for i in range(nchan): msg = ( f"{i:>{lens['ch']}} " f"{cols['name'][i]:<{lens['name']}} " f"{cols['type'][i].upper():<{lens['type']}} " f"{cols['unit'][i]:<{lens['unit']}} " ) for col in ["min", "Q1", "median", "Q3"]: msg += f"{cols[col][i]:>9.2f} " msg += f"{cols['max'][i]:>9.2f}" print(msg) def _allocate_data(preload, shape, dtype): """Allocate data in memory or in memmap for preloading.""" if preload in (None, True): # None comes from _read_segment data = np.zeros(shape, dtype) else: _validate_type(preload, "path-like", "preload") data = np.memmap(str(preload), mode="w+", dtype=dtype, shape=shape) return data def _convert_slice(sel): if len(sel) and (np.diff(sel) == 1).all(): return slice(sel[0], sel[-1] + 1) else: return sel def _get_ch_factors(inst, units, picks_idxs): """Get scaling factors for data, given units. Parameters ---------- inst : instance of Raw | Epochs | Evoked The instance. %(units)s picks_idxs : ndarray The picks as provided through _picks_to_idx. Returns ------- ch_factors : ndarray of floats, shape(len(picks),) The scaling factors for each channel, ordered according to picks. """ _validate_type(units, types=(None, str, dict), item_name="units") ch_factors = np.ones(len(picks_idxs)) si_units = _handle_default("si_units") ch_types = inst.get_channel_types(picks=picks_idxs) # Convert to dict if str units if isinstance(units, str): # Check that there is only one channel type unit_ch_type = list(set(ch_types) & set(si_units.keys())) if len(unit_ch_type) > 1: raise ValueError( '"units" cannot be str if there is more than ' "one channel type with a unit " f"{unit_ch_type}." ) units = {unit_ch_type[0]: units} # make the str argument a dict # Loop over the dict to get channel factors if isinstance(units, dict): for ch_type, ch_unit in units.items(): # Get the scaling factors scaling = _get_scaling(ch_type, ch_unit) if scaling != 1: indices = [i_ch for i_ch, ch in enumerate(ch_types) if ch == ch_type] ch_factors[indices] *= scaling return ch_factors def _get_scaling(ch_type, target_unit): """Return the scaling factor based on the channel type and a target unit. Parameters ---------- ch_type : str The channel type. target_unit : str The target unit for the provided channel type. Returns ------- scaling : float The scaling factor to convert from the si_unit (used by default for MNE objects) to the target unit. """ scaling = 1.0 si_units = _handle_default("si_units") si_units_splitted = {key: si_units[key].split("/") for key in si_units} prefixes = _handle_default("prefixes") prefix_list = list(prefixes.keys()) # Check that the provided unit exists for the ch_type unit_list = target_unit.split("/") if ch_type not in si_units.keys(): raise KeyError( f"{ch_type} is not a channel type that can be scaled from units." ) si_unit_list = si_units_splitted[ch_type] if len(unit_list) != len(si_unit_list): raise ValueError( f"{target_unit} is not a valid unit for {ch_type}, use a " f"sub-multiple of {si_units[ch_type]} instead." ) for i, unit in enumerate(unit_list): valid = [prefix + si_unit_list[i] for prefix in prefix_list] if unit not in valid: raise ValueError( f"{target_unit} is not a valid unit for {ch_type}, use a " f"sub-multiple of {si_units[ch_type]} instead." ) # Get the scaling factors for i, unit in enumerate(unit_list): has_square = False # XXX power normally not used as csd cannot get_data() if unit[-1] == "²": has_square = True if unit == "m" or unit == "m²": factor = 1.0 elif unit[0] in prefixes.keys(): factor = prefixes[unit[0]] else: factor = 1.0 if factor != 1: if has_square: factor *= factor if i == 0: scaling = scaling * factor elif i == 1: scaling = scaling / factor return scaling class _ReadSegmentFileProtector: """Ensure only _filenames, _raw_extras, and _read_segment_file are used.""" def __init__(self, raw): self.__raw = raw assert hasattr(raw, "_projector") self._filenames = raw._filenames self._raw_extras = raw._raw_extras def _read_segment_file(self, data, idx, fi, start, stop, cals, mult): return self.__raw.__class__._read_segment_file( self, data, idx, fi, start, stop, cals, mult ) class _RawShell: """Create a temporary raw object.""" def __init__(self): self.first_samp = None self.last_samp = None self._first_time = None self._last_time = None self._cals = None self._projector = None @property def n_times(self): # noqa: D102 return self.last_samp - self.first_samp + 1 @property def annotations(self): # noqa: D102 return self._annotations def set_annotations(self, annotations): if annotations is None: annotations = Annotations([], [], [], None) self._annotations = annotations.copy() ############################################################################### # Writing # Assume we never hit more than 100 splits, like for epochs MAX_N_SPLITS = 100 def _write_raw(raw_fid_writer, fpath, split_naming, overwrite): """Write raw file with splitting.""" dir_path = fpath.parent _check_fname( dir_path, overwrite="read", must_exist=True, name="parent directory", need_dir=True, ) # We have to create one extra filename here to make the for loop below happy, # but it will raise an error if it actually gets used split_fnames = _make_split_fnames( fpath.name, n_splits=MAX_N_SPLITS + 1, split_naming=split_naming ) is_next_split, prev_fname = True, None for part_idx in range(0, MAX_N_SPLITS): if not is_next_split: break bids_special_behavior = part_idx == 0 and split_naming == "bids" if bids_special_behavior: reserved_fname = dir_path / split_fnames[0] logger.info(f"Reserving possible split file {reserved_fname.name}") _check_fname(reserved_fname, overwrite) reserved_ctx = _ReservedFilename(reserved_fname) use_fpath = fpath else: reserved_ctx = nullcontext() use_fpath = dir_path / split_fnames[part_idx] next_fname = split_fnames[part_idx + 1] _check_fname(use_fpath, overwrite) logger.info(f"Writing {use_fpath}") with start_and_end_file(use_fpath) as fid, reserved_ctx: is_next_split = raw_fid_writer.write(fid, part_idx, prev_fname, next_fname) logger.info(f"Closing {use_fpath}") if bids_special_behavior and is_next_split: logger.info(f"Renaming BIDS split file {fpath.name}") prev_fname = dir_path / split_fnames[0] shutil.move(use_fpath, prev_fname) prev_fname = use_fpath else: raise RuntimeError(f"Exceeded maximum number of splits ({MAX_N_SPLITS}).") logger.info("[done]") class _ReservedFilename: def __init__(self, fname): self.fname = fname assert op.isdir(op.dirname(fname)), fname with open(fname, "w"): pass self.remove = True def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): if self.remove: os.remove(self.fname) @dataclass(frozen=True) class _RawFidWriterCfg: buffer_size: int split_size: int drop_small_buffer: bool fmt: str reset_range: bool = field(init=False) data_type: int = field(init=False) def __post_init__(self): type_dict = dict( short=FIFF.FIFFT_DAU_PACK16, int=FIFF.FIFFT_INT, single=FIFF.FIFFT_FLOAT, double=FIFF.FIFFT_DOUBLE, ) _check_option("fmt", self.fmt, type_dict.keys()) reset_dict = dict(short=False, int=False, single=True, double=True) object.__setattr__(self, "reset_range", reset_dict[self.fmt]) object.__setattr__(self, "data_type", type_dict[self.fmt]) class _RawFidWriter: def __init__(self, raw, info, picks, projector, start, stop, cfg): self.raw = raw self.picks = _picks_to_idx(info, picks, "all", ()) self.info = pick_info(info, sel=self.picks, copy=True) for k in range(self.info["nchan"]): # Scan numbers may have been messed up self.info["chs"][k]["scanno"] = k + 1 # scanno starts at 1 in FIF format if cfg.reset_range: self.info["chs"][k]["range"] = 1.0 self.projector = projector # self.start is the only mutable attribute in this design! self.start, self.stop = start, stop self.cfg = cfg def write(self, fid, part_idx, prev_fname, next_fname): self._check_start_stop_within_bounds() start_block(fid, FIFF.FIFFB_MEAS) _write_raw_metadata( fid, self.info, self.cfg.data_type, self.cfg.reset_range, self.raw.annotations, ) self.start = _write_raw_data( self.raw, self.info, self.picks, fid, part_idx, self.start, self.stop, self.cfg.buffer_size, prev_fname, self.cfg.split_size, next_fname, self.projector, self.cfg.drop_small_buffer, self.cfg.fmt, ) end_block(fid, FIFF.FIFFB_MEAS) is_next_split = self.start < self.stop return is_next_split def _check_start_stop_within_bounds(self): # we've done something wrong if we hit this n_times_max = len(self.raw.times) error_msg = ( f"Can't write raw file with no data: {self.start} -> {self.stop} " f"(max: {n_times_max}) requested" ) if self.start >= self.stop or self.stop > n_times_max: raise RuntimeError(error_msg) def _write_raw_data( raw, info, picks, fid, part_idx, start, stop, buffer_size, prev_fname, split_size, next_fname, projector, drop_small_buffer, fmt, ): # Start the raw data data_kind = "IAS_" if info.get("maxshield", False) else "" data_kind = getattr(FIFF, f"FIFFB_{data_kind}RAW_DATA") start_block(fid, data_kind) first_samp = raw.first_samp + start if first_samp != 0: write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first_samp) # previous file name and id if part_idx > 0 and prev_fname is not None: start_block(fid, FIFF.FIFFB_REF) write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_PREV_FILE) write_string(fid, FIFF.FIFF_REF_FILE_NAME, prev_fname) if info["meas_id"] is not None: write_id(fid, FIFF.FIFF_REF_FILE_ID, info["meas_id"]) write_int(fid, FIFF.FIFF_REF_FILE_NUM, part_idx - 1) end_block(fid, FIFF.FIFFB_REF) pos_prev = fid.tell() if pos_prev > split_size: raise ValueError( 'file is larger than "split_size" after writing ' "measurement information, you must use a larger " f"value for split size: {pos_prev} plus enough bytes for " "the chosen buffer_size" ) # Check to see if this has acquisition skips and, if so, if we can # write out empty buffers instead of zeroes firsts = list(range(start, stop, buffer_size)) lasts = np.array(firsts) + buffer_size if lasts[-1] > stop: lasts[-1] = stop sk_onsets, sk_ends = _annotations_starts_stops(raw, "bad_acq_skip") do_skips = False if len(sk_onsets) > 0: if np.isin(sk_onsets, firsts).all() and np.isin(sk_ends, lasts).all(): do_skips = True else: if part_idx == 0: warn( "Acquisition skips detected but did not fit evenly into " "output buffer_size, will be written as zeroes." ) cals = [ch["cal"] * ch["range"] for ch in info["chs"]] # Write the blocks n_current_skip = 0 new_start = start for first, last in zip(firsts, lasts): if do_skips: if ((first >= sk_onsets) & (last <= sk_ends)).any(): # Track how many we have n_current_skip += 1 continue elif n_current_skip > 0: # Write out an empty buffer instead of data write_int(fid, FIFF.FIFF_DATA_SKIP, n_current_skip) # These two NOPs appear to be optional (MaxFilter does not do # it, but some acquisition machines do) so let's not bother. # write_nop(fid) # write_nop(fid) n_current_skip = 0 data, times = raw[picks, first:last] assert len(times) == last - first if projector is not None: data = np.dot(projector, data) if drop_small_buffer and (first > start) and (len(times) < buffer_size): logger.info("Skipping data chunk due to small buffer ... [done]") break logger.debug(f"Writing FIF {first:6d} ... {last:6d} ...") _write_raw_buffer(fid, data, cals, fmt) pos = fid.tell() this_buff_size_bytes = pos - pos_prev overage = pos - split_size + _NEXT_FILE_BUFFER if overage > 0: # This should occur on the first buffer write of the file, so # we should mention the space required for the meas info raise ValueError( f"buffer size ({this_buff_size_bytes}) is too large for the " f"given split size ({split_size}) " f"by {overage} bytes after writing info ({pos_prev}) and " "leaving enough space " f'for end tags ({_NEXT_FILE_BUFFER}): decrease "buffer_size_sec" ' 'or increase "split_size".' ) new_start = last # Split files if necessary, leave some space for next file info # make sure we check to make sure we actually *need* another buffer # with the "and" check if ( pos >= split_size - this_buff_size_bytes - _NEXT_FILE_BUFFER and first + buffer_size < stop ): start_block(fid, FIFF.FIFFB_REF) write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE) write_string(fid, FIFF.FIFF_REF_FILE_NAME, op.basename(next_fname)) if info["meas_id"] is not None: write_id(fid, FIFF.FIFF_REF_FILE_ID, info["meas_id"]) write_int(fid, FIFF.FIFF_REF_FILE_NUM, part_idx + 1) end_block(fid, FIFF.FIFFB_REF) break pos_prev = pos end_block(fid, data_kind) return new_start @fill_doc def _write_raw_metadata(fid, info, data_type, reset_range, annotations): """Start write raw data in file. Parameters ---------- fid : file The created file. %(info_not_none)s data_type : int The data_type in case it is necessary. Should be 4 (FIFFT_FLOAT), 5 (FIFFT_DOUBLE), 16 (FIFFT_DAU_PACK16), or 3 (FIFFT_INT) for raw data. reset_range : bool If True, the info['chs'][k]['range'] parameter will be set to unity. annotations : instance of Annotations The annotations to write. """ # # Create the file and save the essentials # write_id(fid, FIFF.FIFF_BLOCK_ID) if info["meas_id"] is not None: write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info["meas_id"]) write_meas_info(fid, info, data_type=data_type, reset_range=reset_range) # # Annotations # if len(annotations) > 0: # don't save empty annot _write_annotations(fid, annotations) def _write_raw_buffer(fid, buf, cals, fmt): """Write raw buffer. Parameters ---------- fid : file descriptor an open raw data file. buf : array The buffer to write. cals : array Calibration factors. fmt : str 'short', 'int', 'single', or 'double' for 16/32 bit int or 32/64 bit float for each item. This will be doubled for complex datatypes. Note that short and int formats cannot be used for complex data. """ if buf.shape[0] != len(cals): raise ValueError("buffer and calibration sizes do not match") _check_option("fmt", fmt, ["short", "int", "single", "double"]) cast_int = False # allow unsafe cast if np.isrealobj(buf): if fmt == "short": write_function = write_dau_pack16 cast_int = True elif fmt == "int": write_function = write_int cast_int = True elif fmt == "single": write_function = write_float else: write_function = write_double else: if fmt == "single": write_function = write_complex64 elif fmt == "double": write_function = write_complex128 else: raise ValueError( 'only "single" and "double" supported for writing complex data' ) buf = buf / np.ravel(cals)[:, None] if cast_int: buf = buf.astype(np.int32) write_function(fid, FIFF.FIFF_DATA_BUFFER, buf) def _check_raw_compatibility(raw): """Ensure all instances of Raw have compatible parameters.""" for ri in range(1, len(raw)): if not isinstance(raw[ri], type(raw[0])): raise ValueError(f"raw[{ri}] type must match") for key in ("nchan", "sfreq"): a, b = raw[ri].info[key], raw[0].info[key] if a != b: raise ValueError( f"raw[{ri}].info[{key}] must match:\n{repr(a)} != {repr(b)}" ) for kind in ("bads", "ch_names"): set1 = set(raw[0].info[kind]) set2 = set(raw[ri].info[kind]) mismatch = set1.symmetric_difference(set2) if mismatch: raise ValueError( f"raw[{ri}]['info'][{kind}] do not match: {sorted(mismatch)}" ) if any(raw[ri]._cals != raw[0]._cals): raise ValueError("raw[%d]._cals must match" % ri) if len(raw[0].info["projs"]) != len(raw[ri].info["projs"]): raise ValueError("SSP projectors in raw files must be the same") if not all( _proj_equal(p1, p2) for p1, p2 in zip(raw[0].info["projs"], raw[ri].info["projs"]) ): raise ValueError("SSP projectors in raw files must be the same") if any(r.orig_format != raw[0].orig_format for r in raw): warn( "raw files do not all have the same data format, could result in " 'precision mismatch. Setting raw.orig_format="unknown"' ) raw[0].orig_format = "unknown" @verbose def concatenate_raws( raws, preload=None, events_list=None, *, on_mismatch="raise", verbose=None ): """Concatenate `~mne.io.Raw` instances as if they were continuous. .. note:: ``raws[0]`` is modified in-place to achieve the concatenation. Boundaries of the raw files are annotated bad. If you wish to use the data as continuous recording, you can remove the boundary annotations after concatenation (see :meth:`mne.Annotations.delete`). Parameters ---------- raws : list List of `~mne.io.Raw` instances to concatenate (in order). %(preload_concatenate)s events_list : None | list The events to concatenate. Defaults to ``None``. %(on_mismatch_info)s %(verbose)s Returns ------- raw : instance of Raw The result of the concatenation (first Raw instance passed in). events : ndarray of int, shape (n_events, 3) The events. Only returned if ``event_list`` is not None. """ for idx, raw in enumerate(raws[1:], start=1): _ensure_infos_match( info1=raws[0].info, info2=raw.info, name=f"raws[{idx}]", on_mismatch=on_mismatch, ) if events_list is not None: if len(events_list) != len(raws): raise ValueError( "`raws` and `event_list` are required to be of the same length" ) first, last = zip(*[(r.first_samp, r.last_samp) for r in raws]) events = concatenate_events(events_list, first, last) raws[0].append(raws[1:], preload) if events_list is None: return raws[0] else: return raws[0], events @fill_doc def match_channel_orders(insts=None, copy=True, *, raws=None): """Ensure consistent channel order across instances (Raw, Epochs, or Evoked). Parameters ---------- insts : list List of :class:`~mne.io.Raw`, :class:`~mne.Epochs`, or :class:`~mne.Evoked` instances to order. %(copy_df)s raws : list This parameter is deprecated and will be removed in mne version 1.9. Please use ``insts`` instead. Returns ------- list of Raw | list of Epochs | list of Evoked List of instances (Raw, Epochs, or Evoked) with channel orders matched according to the order they had in the first item in the ``insts`` list. """ # XXX: remove "raws" parameter and logic below with MNE version 1.9 # and remove default parameter value of insts if raws is not None: warn( "The ``raws`` parameter is deprecated and will be removed in version " "1.9. Use the ``insts`` parameter to suppress this warning.", DeprecationWarning, ) insts = raws elif insts is None: # both insts and raws is None raise ValueError( "You need to pass a list of Raw, Epochs, or Evoked to ``insts``." ) insts = deepcopy(insts) if copy else insts ch_order = insts[0].ch_names for inst in insts[1:]: inst.reorder_channels(ch_order) return insts def _check_maxshield(allow_maxshield): """Warn or error about MaxShield.""" msg = ( "This file contains raw Internal Active " "Shielding data. It may be distorted. Elekta " "recommends it be run through MaxFilter to " "produce reliable results. Consider closing " "the file and running MaxFilter on the data." ) if allow_maxshield: if not (isinstance(allow_maxshield, str) and allow_maxshield == "yes"): warn(msg) else: msg += ( " Use allow_maxshield=True if you are sure you" " want to load the data despite this warning." ) raise ValueError(msg) def _get_fname_rep(fname): if not _file_like(fname): return fname else: return "File-like"