"""Compatibility fixes for older versions of libraries. If you add content to this file, please give the version of the package at which the fix is no longer needed. # originally copied from scikit-learn """ # Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. # NOTE: # Imports for SciPy submodules need to stay nested in this module # because this module is imported many places (but not always used)! import inspect import operator as operator_module import os import warnings from io import StringIO from math import log from pprint import pprint import numpy as np ############################################################################### # distutils # distutils has been deprecated since Python 3.10 and was removed # from the standard library with the release of Python 3.12. def _compare_version(version_a, operator, version_b): """Compare two version strings via a user-specified operator. Parameters ---------- version_a : str First version string. operator : '==' | '>' | '<' | '>=' | '<=' Operator to compare ``version_a`` and ``version_b`` in the form of ``version_a operator version_b``. version_b : str Second version string. Returns ------- bool The result of the version comparison. """ from packaging.version import parse mapping = {"<": "lt", "<=": "le", "==": "eq", "!=": "ne", ">=": "ge", ">": "gt"} with warnings.catch_warnings(record=True): warnings.simplefilter("ignore") ver_a = parse(version_a) ver_b = parse(version_b) return getattr(operator_module, mapping[operator])(ver_a, ver_b) ############################################################################### # Misc def _median_complex(data, axis): """Compute marginal median on complex data safely. Can be removed when numpy introduces a fix. See: https://github.com/scipy/scipy/pull/12676/. """ # np.median must be passed real arrays for the desired result if np.iscomplexobj(data): data = np.median(np.real(data), axis=axis) + 1j * np.median( np.imag(data), axis=axis ) else: data = np.median(data, axis=axis) return data def _safe_svd(A, **kwargs): """Get around the SVD did not converge error of death.""" # Intel has a bug with their GESVD driver: # https://software.intel.com/en-us/forums/intel-distribution-for-python/topic/628049 # noqa: E501 # For SciPy 0.18 and up, we can work around it by using # lapack_driver='gesvd' instead. from scipy import linalg if kwargs.get("overwrite_a", False): raise ValueError("Cannot set overwrite_a=True with this function") try: return linalg.svd(A, **kwargs) except np.linalg.LinAlgError as exp: from .utils import warn warn(f"SVD error ({exp}), attempting to use GESVD instead of GESDD") return linalg.svd(A, lapack_driver="gesvd", **kwargs) def _csc_array_cast(x): from scipy.sparse import csc_array return csc_array(x) # Can be replaced with sparse.eye_array once we depend on SciPy >= 1.12 def _eye_array(n, *, format="csr"): # noqa: A002 from scipy import sparse return sparse.dia_array((np.ones(n), 0), shape=(n, n)).asformat(format) ############################################################################### # NumPy Generator (NumPy 1.17) def rng_uniform(rng): """Get the uniform/randint from the rng.""" # prefer Generator.integers, fall back to RandomState.randint return getattr(rng, "integers", getattr(rng, "randint", None)) ############################################################################### # Misc utilities # get_fdata() requires knowing the dtype ahead of time, so let's triage on our # own instead def _get_img_fdata(img): data = np.asanyarray(img.dataobj) dtype = np.complex128 if np.iscomplexobj(data) else np.float64 return data.astype(dtype) ############################################################################## # adapted from scikit-learn _DEFAULT_TAGS = { "array_api_support": False, "non_deterministic": False, "requires_positive_X": False, "requires_positive_y": False, "X_types": ["2darray"], "poor_score": False, "no_validation": False, "multioutput": False, "allow_nan": False, "stateless": False, "multilabel": False, "_skip_test": False, "_xfail_checks": False, "multioutput_only": False, "binary_only": False, "requires_fit": True, "preserves_dtype": [np.float64], "requires_y": False, "pairwise": False, } class BaseEstimator: """Base class for all estimators in scikit-learn. Notes ----- All estimators should specify all the parameters that can be set at the class level in their ``__init__`` as explicit keyword arguments (no ``*args`` or ``**kwargs``). """ @classmethod def _get_param_names(cls): """Get parameter names for the estimator.""" # fetch the constructor or the original constructor before # deprecation wrapping if any init = getattr(cls.__init__, "deprecated_original", cls.__init__) if init is object.__init__: # No explicit constructor to introspect return [] # introspect the constructor arguments to find the model parameters # to represent init_signature = inspect.signature(init) # Consider the constructor parameters excluding 'self' parameters = [ p for p in init_signature.parameters.values() if p.name != "self" and p.kind != p.VAR_KEYWORD ] for p in parameters: if p.kind == p.VAR_POSITIONAL: raise RuntimeError( "scikit-learn estimators should always " "specify their parameters in the signature" " of their __init__ (no varargs)." f" {cls} with constructor {init_signature} doesn't " " follow this convention." ) # Extract and sort argument names excluding 'self' return sorted([p.name for p in parameters]) def get_params(self, deep=True): """Get parameters for this estimator. Parameters ---------- deep : bool, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns ------- params : dict Parameter names mapped to their values. """ out = dict() for key in self._get_param_names(): # We need deprecation warnings to always be on in order to # catch deprecated param values. # This is set in utils/__init__.py but it gets overwritten # when running under python3 somehow. warnings.simplefilter("always", DeprecationWarning) try: with warnings.catch_warnings(record=True) as w: value = getattr(self, key, None) if len(w) and w[0].category is DeprecationWarning: # if the parameter is deprecated, don't show it continue finally: warnings.filters.pop(0) # XXX: should we rather test if instance of estimator? if deep and hasattr(value, "get_params"): deep_items = value.get_params().items() out.update((key + "__" + k, val) for k, val in deep_items) out[key] = value return out def set_params(self, **params): """Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``__`` so that it's possible to update each component of a nested object. Parameters ---------- **params : dict Parameters. Returns ------- inst : instance The object. """ if not params: # Simple optimisation to gain speed (inspect is slow) return self valid_params = self.get_params(deep=True) for key, value in params.items(): split = key.split("__", 1) if len(split) > 1: # nested objects case name, sub_name = split if name not in valid_params: raise ValueError( f"Invalid parameter {name} for estimator {self}. " "Check the list of available parameters " "with `estimator.get_params().keys()`." ) sub_object = valid_params[name] sub_object.set_params(**{sub_name: value}) else: # simple objects case if key not in valid_params: raise ValueError( f"Invalid parameter {key} for estimator " f"{self.__class__.__name__}. " "Check the list of available parameters " "with `estimator.get_params().keys()`." ) setattr(self, key, value) return self def __repr__(self): # noqa: D105 params = StringIO() pprint(self.get_params(deep=False), params) params.seek(0) class_name = self.__class__.__name__ return f"{class_name}({params.read().strip()})" # __getstate__ and __setstate__ are omitted because they only contain # conditionals that are not satisfied by our objects (e.g., # ``if type(self).__module__.startswith('sklearn.')``. def _more_tags(self): return _DEFAULT_TAGS def _get_tags(self): collected_tags = {} for base_class in reversed(inspect.getmro(self.__class__)): if hasattr(base_class, "_more_tags"): # need the if because mixins might not have _more_tags # but might do redundant work in estimators # (i.e. calling more tags on BaseEstimator multiple times) more_tags = base_class._more_tags(self) collected_tags.update(more_tags) return collected_tags # newer sklearn deprecates importing from sklearn.metrics.scoring, # but older sklearn does not expose check_scoring in sklearn.metrics. def _get_check_scoring(): try: from sklearn.metrics import check_scoring # noqa except ImportError: from sklearn.metrics.scorer import check_scoring # noqa return check_scoring def _check_fit_params(X, fit_params, indices=None): """Check and validate the parameters passed during `fit`. Parameters ---------- X : array-like of shape (n_samples, n_features) Data array. fit_params : dict Dictionary containing the parameters passed at fit. indices : array-like of shape (n_samples,), default=None Indices to be selected if the parameter has the same size as `X`. Returns ------- fit_params_validated : dict Validated parameters. We ensure that the values support indexing. """ try: from sklearn.utils.validation import ( _check_fit_params as _sklearn_check_fit_params, ) return _sklearn_check_fit_params(X, fit_params, indices) except ImportError: from sklearn.model_selection import _validation fit_params_validated = { k: _validation._index_param_value(X, v, indices) for k, v in fit_params.items() } return fit_params_validated ############################################################################### # Copied from sklearn to simplify code paths def empirical_covariance(X, assume_centered=False): """Compute the Maximum likelihood covariance estimator. Parameters ---------- X : ndarray, shape (n_samples, n_features) Data from which to compute the covariance estimate assume_centered : Boolean If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. Returns ------- covariance : 2D ndarray, shape (n_features, n_features) Empirical covariance (Maximum Likelihood Estimator). """ X = np.asarray(X) if X.ndim == 1: X = np.reshape(X, (1, -1)) if X.shape[0] == 1: warnings.warn( "Only one sample available. You may want to reshape your data array" ) if assume_centered: covariance = np.dot(X.T, X) / X.shape[0] else: covariance = np.cov(X.T, bias=1) if covariance.ndim == 0: covariance = np.array([[covariance]]) return covariance class EmpiricalCovariance(BaseEstimator): """Maximum likelihood covariance estimator. Read more in the :ref:`User Guide `. Parameters ---------- store_precision : bool Specifies if the estimated precision is stored. assume_centered : bool If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False (default), data are centered before computation. Attributes ---------- covariance_ : 2D ndarray, shape (n_features, n_features) Estimated covariance matrix precision_ : 2D ndarray, shape (n_features, n_features) Estimated pseudo-inverse matrix. (stored only if store_precision is True) """ def __init__(self, store_precision=True, assume_centered=False): self.store_precision = store_precision self.assume_centered = assume_centered def _set_covariance(self, covariance): """Save the covariance and precision estimates. Storage is done accordingly to `self.store_precision`. Precision stored only if invertible. Parameters ---------- covariance : 2D ndarray, shape (n_features, n_features) Estimated covariance matrix to be stored, and from which precision is computed. """ from scipy import linalg # covariance = check_array(covariance) # set covariance self.covariance_ = covariance # set precision if self.store_precision: self.precision_ = linalg.pinvh(covariance) else: self.precision_ = None def get_precision(self): """Getter for the precision matrix. Returns ------- precision_ : array-like, The precision matrix associated to the current covariance object. """ from scipy import linalg if self.store_precision: precision = self.precision_ else: precision = linalg.pinvh(self.covariance_) return precision def fit(self, X, y=None): """Fit the Maximum Likelihood Estimator covariance model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data, where n_samples is the number of samples and n_features is the number of features. y : ndarray | None Not used, present for API consistency. Returns ------- self : object Returns self. """ # noqa: E501 # X = check_array(X) if self.assume_centered: self.location_ = np.zeros(X.shape[1]) else: self.location_ = X.mean(0) covariance = empirical_covariance(X, assume_centered=self.assume_centered) self._set_covariance(covariance) return self def score(self, X_test, y=None): """Compute the log-likelihood of a Gaussian dataset. Uses ``self.covariance_`` as an estimator of its covariance matrix. Parameters ---------- X_test : array-like, shape = [n_samples, n_features] Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X_test is assumed to be drawn from the same distribution than the data used in fit (including centering). y : ndarray | None Not used, present for API consistency. Returns ------- res : float The likelihood of the data set with `self.covariance_` as an estimator of its covariance matrix. """ # compute empirical covariance of the test set test_cov = empirical_covariance(X_test - self.location_, assume_centered=True) # compute log likelihood res = log_likelihood(test_cov, self.get_precision()) return res def error_norm(self, comp_cov, norm="frobenius", scaling=True, squared=True): """Compute the Mean Squared Error between two covariance estimators. Parameters ---------- comp_cov : array-like, shape = [n_features, n_features] The covariance to compare with. norm : str The type of norm used to compute the error. Available error types: - 'frobenius' (default): sqrt(tr(A^t.A)) - 'spectral': sqrt(max(eigenvalues(A^t.A)) where A is the error ``(comp_cov - self.covariance_)``. scaling : bool If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled. squared : bool Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned. Returns ------- The Mean Squared Error (in the sense of the Frobenius norm) between `self` and `comp_cov` covariance estimators. """ from scipy import linalg # compute the error error = comp_cov - self.covariance_ # compute the error norm if norm == "frobenius": squared_norm = np.sum(error**2) elif norm == "spectral": squared_norm = np.amax(linalg.svdvals(np.dot(error.T, error))) else: raise NotImplementedError( "Only spectral and frobenius norms are implemented" ) # optionally scale the error norm if scaling: squared_norm = squared_norm / error.shape[0] # finally get either the squared norm or the norm if squared: result = squared_norm else: result = np.sqrt(squared_norm) return result def mahalanobis(self, observations): """Compute the squared Mahalanobis distances of given observations. Parameters ---------- observations : array-like, shape = [n_observations, n_features] The observations, the Mahalanobis distances of the which we compute. Observations are assumed to be drawn from the same distribution than the data used in fit. Returns ------- mahalanobis_distance : array, shape = [n_observations,] Squared Mahalanobis distances of the observations. """ precision = self.get_precision() # compute mahalanobis distances centered_obs = observations - self.location_ mahalanobis_dist = np.sum(np.dot(centered_obs, precision) * centered_obs, 1) return mahalanobis_dist def log_likelihood(emp_cov, precision): """Compute the sample mean of the log_likelihood under a covariance model. computes the empirical expected log-likelihood (accounting for the normalization terms and scaling), allowing for universal comparison (beyond this software package) Parameters ---------- emp_cov : 2D ndarray (n_features, n_features) Maximum Likelihood Estimator of covariance precision : 2D ndarray (n_features, n_features) The precision matrix of the covariance model to be tested Returns ------- sample mean of the log-likelihood """ p = precision.shape[0] log_likelihood_ = -np.sum(emp_cov * precision) + _logdet(precision) log_likelihood_ -= p * np.log(2 * np.pi) log_likelihood_ /= 2.0 return log_likelihood_ # sklearn uses np.linalg for this, but ours is more robust to zero eigenvalues def _logdet(A): """Compute the log det of a positive semidefinite matrix.""" from scipy import linalg vals = linalg.eigvalsh(A) # avoid negative (numerical errors) or zero (semi-definite matrix) values tol = vals.max() * vals.size * np.finfo(np.float64).eps vals = np.where(vals > tol, vals, tol) return np.sum(np.log(vals)) def _infer_dimension_(spectrum, n_samples, n_features): """Infer the dimension of a dataset of shape (n_samples, n_features). The dataset is described by its spectrum `spectrum`. """ n_spectrum = len(spectrum) ll = np.empty(n_spectrum) for rank in range(n_spectrum): ll[rank] = _assess_dimension_(spectrum, rank, n_samples, n_features) return ll.argmax() def _assess_dimension_(spectrum, rank, n_samples, n_features): from scipy.special import gammaln if rank > len(spectrum): raise ValueError("The tested rank cannot exceed the rank of the dataset") pu = -rank * log(2.0) for i in range(rank): pu += gammaln((n_features - i) / 2.0) - log(np.pi) * (n_features - i) / 2.0 pl = np.sum(np.log(spectrum[:rank])) pl = -pl * n_samples / 2.0 if rank == n_features: pv = 0 v = 1 else: v = np.sum(spectrum[rank:]) / (n_features - rank) pv = -np.log(v) * n_samples * (n_features - rank) / 2.0 m = n_features * rank - rank * (rank + 1.0) / 2.0 pp = log(2.0 * np.pi) * (m + rank + 1.0) / 2.0 pa = 0.0 spectrum_ = spectrum.copy() spectrum_[rank:n_features] = v for i in range(rank): for j in range(i + 1, len(spectrum)): pa += log( (spectrum[i] - spectrum[j]) * (1.0 / spectrum_[j] - 1.0 / spectrum_[i]) ) + log(n_samples) ll = pu + pl + pv + pp - pa / 2.0 - rank * log(n_samples) / 2.0 return ll def svd_flip(u, v, u_based_decision=True): # noqa: D103 if u_based_decision: # columns of u, rows of v max_abs_cols = np.argmax(np.abs(u), axis=0) signs = np.sign(u[max_abs_cols, np.arange(u.shape[1])]) u *= signs v *= signs[:, np.newaxis] else: # rows of v, columns of u max_abs_rows = np.argmax(np.abs(v), axis=1) signs = np.sign(v[np.arange(v.shape[0]), max_abs_rows]) u *= signs v *= signs[:, np.newaxis] return u, v def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08): """Use high precision for cumsum and check that final value matches sum. Parameters ---------- arr : array-like To be cumulatively summed as flat axis : int, optional Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. rtol : float Relative tolerance, see ``np.allclose`` atol : float Absolute tolerance, see ``np.allclose`` """ out = np.cumsum(arr, axis=axis, dtype=np.float64) expected = np.sum(arr, axis=axis, dtype=np.float64) if not np.all( np.isclose( out.take(-1, axis=axis), expected, rtol=rtol, atol=atol, equal_nan=True ) ): warnings.warn( "cumsum was found to be unstable: " "its last element does not correspond to sum", RuntimeWarning, ) return out ############################################################################### # From nilearn def _crop_colorbar(cbar, cbar_vmin, cbar_vmax): """Crop a colorbar to show from cbar_vmin to cbar_vmax. Used when symmetric_cbar=False is used. """ if (cbar_vmin is None) and (cbar_vmax is None): return cbar_tick_locs = cbar.locator.locs if cbar_vmax is None: cbar_vmax = cbar_tick_locs.max() if cbar_vmin is None: cbar_vmin = cbar_tick_locs.min() new_tick_locs = np.linspace(cbar_vmin, cbar_vmax, len(cbar_tick_locs)) cbar.ax.set_ylim(cbar_vmin, cbar_vmax) X = cbar._mesh()[0] X = np.array([X[0], X[-1]]) Y = np.array([[cbar_vmin, cbar_vmin], [cbar_vmax, cbar_vmax]]) N = X.shape[0] ii = [0, 1, N - 2, N - 1, 2 * N - 1, 2 * N - 2, N + 1, N, 0] x = X.T.reshape(-1)[ii] y = Y.T.reshape(-1)[ii] xy = ( np.column_stack([y, x]) if cbar.orientation == "horizontal" else np.column_stack([x, y]) ) cbar.outline.set_xy(xy) cbar.set_ticks(new_tick_locs) cbar.update_ticks() ############################################################################### # Numba (optional requirement) # Here we choose different defaults to speed things up by default try: import numba if _compare_version(numba.__version__, "<", "0.53.1"): raise ImportError prange = numba.prange def jit(nopython=True, nogil=True, fastmath=True, cache=True, **kwargs): # noqa return numba.jit( nopython=nopython, nogil=nogil, fastmath=fastmath, cache=cache, **kwargs ) except Exception: # could be ImportError, SystemError, etc. has_numba = False else: has_numba = os.getenv("MNE_USE_NUMBA", "true").lower() == "true" if not has_numba: def jit(**kwargs): # noqa def _jit(func): return func return _jit prange = range bincount = np.bincount else: @jit() def bincount(x, weights, minlength): # noqa: D103 out = np.zeros(minlength) for idx, w in zip(x, weights): out[idx] += w return out ############################################################################### # Matplotlib # workaround: plt.close() doesn't spawn close_event on Agg backend # https://github.com/matplotlib/matplotlib/issues/18609 def _close_event(fig): """Force calling of the MPL figure close event.""" from matplotlib import backend_bases from .utils import logger try: fig.canvas.callbacks.process( "close_event", backend_bases.CloseEvent(name="close_event", canvas=fig.canvas), ) logger.debug(f"Called {fig!r}.canvas.close_event()") except ValueError: # old mpl with Qt logger.debug(f"Calling {fig!r}.canvas.close_event() failed") pass # pragma: no cover ############################################################################### # SciPy 1.14+ minimum_phase half=True option def minimum_phase(h, method="homomorphic", n_fft=None, *, half=True): """Wrap scipy.signal.minimum_phase with half option.""" # Can be removed once from scipy.fft import fft, ifft from scipy.signal import minimum_phase as sp_minimum_phase assert isinstance(method, str) and method == "homomorphic" if "half" in inspect.getfullargspec(sp_minimum_phase).kwonlyargs: return sp_minimum_phase(h, method=method, n_fft=n_fft, half=half) h = np.asarray(h) if np.iscomplexobj(h): raise ValueError("Complex filters not supported") if h.ndim != 1 or h.size <= 2: raise ValueError("h must be 1-D and at least 2 samples long") n_half = len(h) // 2 if not np.allclose(h[-n_half:][::-1], h[:n_half]): warnings.warn( "h does not appear to by symmetric, conversion may fail", RuntimeWarning, stacklevel=2, ) if n_fft is None: n_fft = 2 ** int(np.ceil(np.log2(2 * (len(h) - 1) / 0.01))) n_fft = int(n_fft) if n_fft < len(h): raise ValueError(f"n_fft must be at least len(h)=={len(h)}") # zero-pad; calculate the DFT h_temp = np.abs(fft(h, n_fft)) # take 0.25*log(|H|**2) = 0.5*log(|H|) h_temp += 1e-7 * h_temp[h_temp > 0].min() # don't let log blow up np.log(h_temp, out=h_temp) if half: # halving of magnitude spectrum optional h_temp *= 0.5 # IDFT h_temp = ifft(h_temp).real # multiply pointwise by the homomorphic filter # lmin[n] = 2u[n] - d[n] # i.e., double the positive frequencies and zero out the negative ones; # Oppenheim+Shafer 3rd ed p991 eq13.42b and p1004 fig13.7 win = np.zeros(n_fft) win[0] = 1 stop = n_fft // 2 win[1:stop] = 2 if n_fft % 2: win[stop] = 1 h_temp *= win h_temp = ifft(np.exp(fft(h_temp))) h_minimum = h_temp.real n_out = (n_half + len(h) % 2) if half else len(h) return h_minimum[:n_out]