# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import numpy as np from .._fiff.pick import ( _pick_data_channels, _picks_by_type, _picks_to_idx, pick_info, pick_types, ) from ..cov import _check_scalings_user from ..filter import filter_data from ..time_frequency import psd_array_multitaper from ..utils import _check_option, _validate_type, fill_doc, verbose from .base import BaseEstimator from .mixin import TransformerMixin class _ConstantScaler: """Scale channel types using constant values.""" def __init__(self, info, scalings, do_scaling=True): self._scalings = scalings self._info = info self._do_scaling = do_scaling def fit(self, X, y=None): scalings = _check_scalings_user(self._scalings) picks_by_type = _picks_by_type( pick_info(self._info, _pick_data_channels(self._info, exclude=())) ) std = np.ones(sum(len(p[1]) for p in picks_by_type)) if X.shape[1] != len(std): raise ValueError( f"info had {len(std)} data channels but X has {len(X)} channels" ) if self._do_scaling: # this is silly, but necessary for completeness for kind, picks in picks_by_type: std[picks] = 1.0 / scalings[kind] self.std_ = std self.mean_ = np.zeros_like(std) return self def transform(self, X): return X / self.std_ def inverse_transform(self, X, y=None): return X * self.std_ def fit_transform(self, X, y=None): return self.fit(X, y).transform(X) def _sklearn_reshape_apply(func, return_result, X, *args, **kwargs): """Reshape epochs and apply function.""" if not isinstance(X, np.ndarray): raise ValueError(f"data should be an np.ndarray, got {type(X)}.") orig_shape = X.shape X = np.reshape(X.transpose(0, 2, 1), (-1, orig_shape[1])) X = func(X, *args, **kwargs) if return_result: X.shape = (orig_shape[0], orig_shape[2], orig_shape[1]) X = X.transpose(0, 2, 1) return X @fill_doc class Scaler(TransformerMixin, BaseEstimator): """Standardize channel data. This class scales data for each channel. It differs from scikit-learn classes (e.g., :class:`sklearn.preprocessing.StandardScaler`) in that it scales each *channel* by estimating μ and σ using data from all time points and epochs, as opposed to standardizing each *feature* (i.e., each time point for each channel) by estimating using μ and σ using data from all epochs. Parameters ---------- %(info)s Only necessary if ``scalings`` is a dict or None. scalings : dict, str, default None Scaling method to be applied to data channel wise. * if scalings is None (default), scales mag by 1e15, grad by 1e13, and eeg by 1e6. * if scalings is :class:`dict`, keys are channel types and values are scale factors. * if ``scalings=='median'``, :class:`sklearn.preprocessing.RobustScaler` is used (requires sklearn version 0.17+). * if ``scalings=='mean'``, :class:`sklearn.preprocessing.StandardScaler` is used. with_mean : bool, default True If True, center the data using mean (or median) before scaling. Ignored for channel-type scaling. with_std : bool, default True If True, scale the data to unit variance (``scalings='mean'``), quantile range (``scalings='median``), or using channel type if ``scalings`` is a dict or None). """ def __init__(self, info=None, scalings=None, with_mean=True, with_std=True): self.info = info self.with_mean = with_mean self.with_std = with_std self.scalings = scalings if not (scalings is None or isinstance(scalings, (dict, str))): raise ValueError( f"scalings type should be dict, str, or None, got {type(scalings)}" ) if isinstance(scalings, str): _check_option("scalings", scalings, ["mean", "median"]) if scalings is None or isinstance(scalings, dict): if info is None: raise ValueError( f'Need to specify "info" if scalings is {type(scalings)}' ) self._scaler = _ConstantScaler(info, scalings, self.with_std) elif scalings == "mean": from sklearn.preprocessing import StandardScaler self._scaler = StandardScaler( with_mean=self.with_mean, with_std=self.with_std ) else: # scalings == 'median': from sklearn.preprocessing import RobustScaler self._scaler = RobustScaler( with_centering=self.with_mean, with_scaling=self.with_std ) def fit(self, epochs_data, y=None): """Standardize data across channels. Parameters ---------- epochs_data : array, shape (n_epochs, n_channels, n_times) The data to concatenate channels. y : array, shape (n_epochs,) The label for each epoch. Returns ------- self : instance of Scaler The modified instance. """ _validate_type(epochs_data, np.ndarray, "epochs_data") if epochs_data.ndim == 2: epochs_data = epochs_data[..., np.newaxis] assert epochs_data.ndim == 3, epochs_data.shape _sklearn_reshape_apply(self._scaler.fit, False, epochs_data, y=y) return self def transform(self, epochs_data): """Standardize data across channels. Parameters ---------- epochs_data : array, shape (n_epochs, n_channels[, n_times]) The data. Returns ------- X : array, shape (n_epochs, n_channels, n_times) The data concatenated over channels. Notes ----- This function makes a copy of the data before the operations and the memory usage may be large with big data. """ _validate_type(epochs_data, np.ndarray, "epochs_data") if epochs_data.ndim == 2: # can happen with SlidingEstimator if self.info is not None: assert len(self.info["ch_names"]) == epochs_data.shape[1] epochs_data = epochs_data[..., np.newaxis] assert epochs_data.ndim == 3, epochs_data.shape return _sklearn_reshape_apply(self._scaler.transform, True, epochs_data) def fit_transform(self, epochs_data, y=None): """Fit to data, then transform it. Fits transformer to epochs_data and y and returns a transformed version of epochs_data. Parameters ---------- epochs_data : array, shape (n_epochs, n_channels, n_times) The data. y : None | array, shape (n_epochs,) The label for each epoch. Defaults to None. Returns ------- X : array, shape (n_epochs, n_channels, n_times) The data concatenated over channels. Notes ----- This function makes a copy of the data before the operations and the memory usage may be large with big data. """ return self.fit(epochs_data, y).transform(epochs_data) def inverse_transform(self, epochs_data): """Invert standardization of data across channels. Parameters ---------- epochs_data : array, shape ([n_epochs, ]n_channels, n_times) The data. Returns ------- X : array, shape (n_epochs, n_channels, n_times) The data concatenated over channels. Notes ----- This function makes a copy of the data before the operations and the memory usage may be large with big data. """ squeeze = False # Can happen with CSP if epochs_data.ndim == 2: squeeze = True epochs_data = epochs_data[..., np.newaxis] assert epochs_data.ndim == 3, epochs_data.shape out = _sklearn_reshape_apply(self._scaler.inverse_transform, True, epochs_data) if squeeze: out = out[..., 0] return out class Vectorizer(TransformerMixin): """Transform n-dimensional array into 2D array of n_samples by n_features. This class reshapes an n-dimensional array into an n_samples * n_features array, usable by the estimators and transformers of scikit-learn. Attributes ---------- features_shape_ : tuple Stores the original shape of data. Examples -------- clf = make_pipeline(SpatialFilter(), _XdawnTransformer(), Vectorizer(), LogisticRegression()) """ def fit(self, X, y=None): """Store the shape of the features of X. Parameters ---------- X : array-like The data to fit. Can be, for example a list, or an array of at least 2d. The first dimension must be of length n_samples, where samples are the independent samples used by the estimator (e.g. n_epochs for epoched data). y : None | array, shape (n_samples,) Used for scikit-learn compatibility. Returns ------- self : instance of Vectorizer Return the modified instance. """ X = np.asarray(X) self.features_shape_ = X.shape[1:] return self def transform(self, X): """Convert given array into two dimensions. Parameters ---------- X : array-like The data to fit. Can be, for example a list, or an array of at least 2d. The first dimension must be of length n_samples, where samples are the independent samples used by the estimator (e.g. n_epochs for epoched data). Returns ------- X : array, shape (n_samples, n_features) The transformed data. """ X = np.asarray(X) if X.shape[1:] != self.features_shape_: raise ValueError("Shape of X used in fit and transform must be same") return X.reshape(len(X), -1) def fit_transform(self, X, y=None): """Fit the data, then transform in one step. Parameters ---------- X : array-like The data to fit. Can be, for example a list, or an array of at least 2d. The first dimension must be of length n_samples, where samples are the independent samples used by the estimator (e.g. n_epochs for epoched data). y : None | array, shape (n_samples,) Used for scikit-learn compatibility. Returns ------- X : array, shape (n_samples, -1) The transformed data. """ return self.fit(X).transform(X) def inverse_transform(self, X): """Transform 2D data back to its original feature shape. Parameters ---------- X : array-like, shape (n_samples, n_features) Data to be transformed back to original shape. Returns ------- X : array The data transformed into shape as used in fit. The first dimension is of length n_samples. """ X = np.asarray(X) if X.ndim not in (2, 3): raise ValueError( f"X should be of 2 or 3 dimensions but has shape {X.shape}" ) return X.reshape(X.shape[:-1] + self.features_shape_) @fill_doc class PSDEstimator(TransformerMixin): """Compute power spectral density (PSD) using a multi-taper method. Parameters ---------- sfreq : float The sampling frequency. fmin : float The lower frequency of interest. fmax : float The upper frequency of interest. bandwidth : float The bandwidth of the multi taper windowing function in Hz. adaptive : bool Use adaptive weights to combine the tapered spectra into PSD (slow, use n_jobs >> 1 to speed up computation). low_bias : bool Only use tapers with more than 90%% spectral concentration within bandwidth. n_jobs : int Number of parallel jobs to use (only used if adaptive=True). %(normalization)s %(verbose)s See Also -------- mne.time_frequency.psd_array_multitaper mne.io.Raw.compute_psd mne.Epochs.compute_psd mne.Evoked.compute_psd """ @verbose def __init__( self, sfreq=2 * np.pi, fmin=0, fmax=np.inf, bandwidth=None, adaptive=False, low_bias=True, n_jobs=None, normalization="length", *, verbose=None, ): self.sfreq = sfreq self.fmin = fmin self.fmax = fmax self.bandwidth = bandwidth self.adaptive = adaptive self.low_bias = low_bias self.n_jobs = n_jobs self.normalization = normalization def fit(self, epochs_data, y): """Compute power spectral density (PSD) using a multi-taper method. Parameters ---------- epochs_data : array, shape (n_epochs, n_channels, n_times) The data. y : array, shape (n_epochs,) The label for each epoch. Returns ------- self : instance of PSDEstimator The modified instance. """ if not isinstance(epochs_data, np.ndarray): raise ValueError( f"epochs_data should be of type ndarray (got {type(epochs_data)})." ) return self def transform(self, epochs_data): """Compute power spectral density (PSD) using a multi-taper method. Parameters ---------- epochs_data : array, shape (n_epochs, n_channels, n_times) The data. Returns ------- psd : array, shape (n_signals, n_freqs) or (n_freqs,) The computed PSD. """ if not isinstance(epochs_data, np.ndarray): raise ValueError( f"epochs_data should be of type ndarray (got {type(epochs_data)})." ) psd, _ = psd_array_multitaper( epochs_data, sfreq=self.sfreq, fmin=self.fmin, fmax=self.fmax, bandwidth=self.bandwidth, adaptive=self.adaptive, low_bias=self.low_bias, normalization=self.normalization, n_jobs=self.n_jobs, ) return psd @fill_doc class FilterEstimator(TransformerMixin): """Estimator to filter RtEpochs. Applies a zero-phase low-pass, high-pass, band-pass, or band-stop filter to the channels selected by "picks". l_freq and h_freq are the frequencies below which and above which, respectively, to filter out of the data. Thus the uses are: - l_freq < h_freq: band-pass filter - l_freq > h_freq: band-stop filter - l_freq is not None, h_freq is None: low-pass filter - l_freq is None, h_freq is not None: high-pass filter If n_jobs > 1, more memory is required as "len(picks) * n_times" additional time points need to be temporarily stored in memory. Parameters ---------- %(info_not_none)s %(l_freq)s %(h_freq)s %(picks_good_data)s %(filter_length)s %(l_trans_bandwidth)s %(h_trans_bandwidth)s n_jobs : int | str Number of jobs to run in parallel. Can be 'cuda' if ``cupy`` is installed properly and method='fir'. method : str 'fir' will use overlap-add FIR filtering, 'iir' will use IIR filtering. iir_params : dict | None Dictionary of parameters to use for IIR filtering. See mne.filter.construct_iir_filter for details. If iir_params is None and method="iir", 4th order Butterworth will be used. %(fir_design)s %(verbose)s See Also -------- TemporalFilter Notes ----- This is primarily meant for use in realtime applications. In general it is not recommended in a normal processing pipeline as it may result in edge artifacts. Use with caution. """ def __init__( self, info, l_freq, h_freq, picks=None, filter_length="auto", l_trans_bandwidth="auto", h_trans_bandwidth="auto", n_jobs=None, method="fir", iir_params=None, fir_design="firwin", *, verbose=None, ): self.info = info self.l_freq = l_freq self.h_freq = h_freq self.picks = _picks_to_idx(info, picks) self.filter_length = filter_length self.l_trans_bandwidth = l_trans_bandwidth self.h_trans_bandwidth = h_trans_bandwidth self.n_jobs = n_jobs self.method = method self.iir_params = iir_params self.fir_design = fir_design def fit(self, epochs_data, y): """Filter data. Parameters ---------- epochs_data : array, shape (n_epochs, n_channels, n_times) The data. y : array, shape (n_epochs,) The label for each epoch. Returns ------- self : instance of FilterEstimator The modified instance. """ if not isinstance(epochs_data, np.ndarray): raise ValueError( f"epochs_data should be of type ndarray (got {type(epochs_data)})." ) if self.picks is None: self.picks = pick_types( self.info, meg=True, eeg=True, ref_meg=False, exclude=[] ) if self.l_freq == 0: self.l_freq = None if self.h_freq is not None and self.h_freq > (self.info["sfreq"] / 2.0): self.h_freq = None if self.l_freq is not None and not isinstance(self.l_freq, float): self.l_freq = float(self.l_freq) if self.h_freq is not None and not isinstance(self.h_freq, float): self.h_freq = float(self.h_freq) if self.info["lowpass"] is None or ( self.h_freq is not None and (self.l_freq is None or self.l_freq < self.h_freq) and self.h_freq < self.info["lowpass"] ): with self.info._unlock(): self.info["lowpass"] = self.h_freq if self.info["highpass"] is None or ( self.l_freq is not None and (self.h_freq is None or self.l_freq < self.h_freq) and self.l_freq > self.info["highpass"] ): with self.info._unlock(): self.info["highpass"] = self.l_freq return self def transform(self, epochs_data): """Filter data. Parameters ---------- epochs_data : array, shape (n_epochs, n_channels, n_times) The data. Returns ------- X : array, shape (n_epochs, n_channels, n_times) The data after filtering. """ if not isinstance(epochs_data, np.ndarray): raise ValueError( f"epochs_data should be of type ndarray (got {type(epochs_data)})." ) epochs_data = np.atleast_3d(epochs_data) return filter_data( epochs_data, self.info["sfreq"], self.l_freq, self.h_freq, self.picks, self.filter_length, self.l_trans_bandwidth, self.h_trans_bandwidth, method=self.method, iir_params=self.iir_params, n_jobs=self.n_jobs, copy=False, fir_design=self.fir_design, verbose=False, ) class UnsupervisedSpatialFilter(TransformerMixin, BaseEstimator): """Use unsupervised spatial filtering across time and samples. Parameters ---------- estimator : instance of sklearn.base.BaseEstimator Estimator using some decomposition algorithm. average : bool, default False If True, the estimator is fitted on the average across samples (e.g. epochs). """ def __init__(self, estimator, average=False): # XXX: Use _check_estimator #3381 for attr in ("fit", "transform", "fit_transform"): if not hasattr(estimator, attr): raise ValueError( "estimator must be a scikit-learn " f"transformer, missing {attr} method" ) if not isinstance(average, bool): raise ValueError( f"average parameter must be of bool type, got {type(bool)} instead" ) self.estimator = estimator self.average = average def fit(self, X, y=None): """Fit the spatial filters. Parameters ---------- X : array, shape (n_epochs, n_channels, n_times) The data to be filtered. y : None | array, shape (n_samples,) Used for scikit-learn compatibility. Returns ------- self : instance of UnsupervisedSpatialFilter Return the modified instance. """ if self.average: X = np.mean(X, axis=0).T else: n_epochs, n_channels, n_times = X.shape # trial as time samples X = np.transpose(X, (1, 0, 2)).reshape((n_channels, n_epochs * n_times)).T self.estimator.fit(X) return self def fit_transform(self, X, y=None): """Transform the data to its filtered components after fitting. Parameters ---------- X : array, shape (n_epochs, n_channels, n_times) The data to be filtered. y : None | array, shape (n_samples,) Used for scikit-learn compatibility. Returns ------- X : array, shape (n_epochs, n_channels, n_times) The transformed data. """ return self.fit(X).transform(X) def transform(self, X): """Transform the data to its spatial filters. Parameters ---------- X : array, shape (n_epochs, n_channels, n_times) The data to be filtered. Returns ------- X : array, shape (n_epochs, n_channels, n_times) The transformed data. """ return self._apply_method(X, "transform") def inverse_transform(self, X): """Inverse transform the data to its original space. Parameters ---------- X : array, shape (n_epochs, n_components, n_times) The data to be inverted. Returns ------- X : array, shape (n_epochs, n_channels, n_times) The transformed data. """ return self._apply_method(X, "inverse_transform") def _apply_method(self, X, method): """Vectorize time samples as trials, apply method and reshape back. Parameters ---------- X : array, shape (n_epochs, n_dims, n_times) The data to be inverted. Returns ------- X : array, shape (n_epochs, n_dims, n_times) The transformed data. """ n_epochs, n_channels, n_times = X.shape # trial as time samples X = np.transpose(X, [1, 0, 2]) X = np.reshape(X, [n_channels, n_epochs * n_times]).T # apply method method = getattr(self.estimator, method) X = method(X) # put it back to n_epochs, n_dimensions X = np.reshape(X.T, [-1, n_epochs, n_times]).transpose([1, 0, 2]) return X @fill_doc class TemporalFilter(TransformerMixin): """Estimator to filter data array along the last dimension. Applies a zero-phase low-pass, high-pass, band-pass, or band-stop filter to the channels. l_freq and h_freq are the frequencies below which and above which, respectively, to filter out of the data. Thus the uses are: - l_freq < h_freq: band-pass filter - l_freq > h_freq: band-stop filter - l_freq is not None, h_freq is None: low-pass filter - l_freq is None, h_freq is not None: high-pass filter See :func:`mne.filter.filter_data`. Parameters ---------- l_freq : float | None Low cut-off frequency in Hz. If None the data are only low-passed. h_freq : float | None High cut-off frequency in Hz. If None the data are only high-passed. sfreq : float, default 1.0 Sampling frequency in Hz. filter_length : str | int, default 'auto' Length of the FIR filter to use (if applicable): * int: specified length in samples. * 'auto' (default in 0.14): the filter length is chosen based on the size of the transition regions (7 times the reciprocal of the shortest transition band). * str: (default in 0.13 is "10s") a human-readable time in units of "s" or "ms" (e.g., "10s" or "5500ms") will be converted to that number of samples if ``phase="zero"``, or the shortest power-of-two length at least that duration for ``phase="zero-double"``. l_trans_bandwidth : float | str Width of the transition band at the low cut-off frequency in Hz (high pass or cutoff 1 in bandpass). Can be "auto" (default in 0.14) to use a multiple of ``l_freq``:: min(max(l_freq * 0.25, 2), l_freq) Only used for ``method='fir'``. h_trans_bandwidth : float | str Width of the transition band at the high cut-off frequency in Hz (low pass or cutoff 2 in bandpass). Can be "auto" (default in 0.14) to use a multiple of ``h_freq``:: min(max(h_freq * 0.25, 2.), info['sfreq'] / 2. - h_freq) Only used for ``method='fir'``. n_jobs : int | str, default 1 Number of jobs to run in parallel. Can be 'cuda' if ``cupy`` is installed properly and method='fir'. method : str, default 'fir' 'fir' will use overlap-add FIR filtering, 'iir' will use IIR forward-backward filtering (via filtfilt). iir_params : dict | None, default None Dictionary of parameters to use for IIR filtering. See mne.filter.construct_iir_filter for details. If iir_params is None and method="iir", 4th order Butterworth will be used. fir_window : str, default 'hamming' The window to use in FIR design, can be "hamming", "hann", or "blackman". fir_design : str Can be "firwin" (default) to use :func:`scipy.signal.firwin`, or "firwin2" to use :func:`scipy.signal.firwin2`. "firwin" uses a time-domain design technique that generally gives improved attenuation using fewer samples than "firwin2". .. versionadded:: 0.15 %(verbose)s See Also -------- FilterEstimator Vectorizer mne.filter.filter_data """ @verbose def __init__( self, l_freq=None, h_freq=None, sfreq=1.0, filter_length="auto", l_trans_bandwidth="auto", h_trans_bandwidth="auto", n_jobs=None, method="fir", iir_params=None, fir_window="hamming", fir_design="firwin", *, verbose=None, ): self.l_freq = l_freq self.h_freq = h_freq self.sfreq = sfreq self.filter_length = filter_length self.l_trans_bandwidth = l_trans_bandwidth self.h_trans_bandwidth = h_trans_bandwidth self.n_jobs = n_jobs self.method = method self.iir_params = iir_params self.fir_window = fir_window self.fir_design = fir_design if not isinstance(self.n_jobs, int) and self.n_jobs == "cuda": raise ValueError( f'n_jobs must be int or "cuda", got {type(self.n_jobs)} instead.' ) def fit(self, X, y=None): """Do nothing (for scikit-learn compatibility purposes). Parameters ---------- X : array, shape (n_epochs, n_channels, n_times) or or shape (n_channels, n_times) The data to be filtered over the last dimension. The channels dimension can be zero when passing a 2D array. y : None Not used, for scikit-learn compatibility issues. Returns ------- self : instance of TemporalFilter The modified instance. """ # noqa: E501 return self def transform(self, X): """Filter data along the last dimension. Parameters ---------- X : array, shape (n_epochs, n_channels, n_times) or shape (n_channels, n_times) The data to be filtered over the last dimension. The channels dimension can be zero when passing a 2D array. Returns ------- X : array The data after filtering. """ # noqa: E501 X = np.atleast_2d(X) if X.ndim > 3: raise ValueError( "Array must be of at max 3 dimensions instead " f"got {X.ndim} dimensional matrix" ) shape = X.shape X = X.reshape(-1, shape[-1]) X = filter_data( X, self.sfreq, self.l_freq, self.h_freq, filter_length=self.filter_length, l_trans_bandwidth=self.l_trans_bandwidth, h_trans_bandwidth=self.h_trans_bandwidth, n_jobs=self.n_jobs, method=self.method, iir_params=self.iir_params, copy=False, fir_window=self.fir_window, fir_design=self.fir_design, ) return X.reshape(shape)