# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import importlib import inspect import logging import os import os.path as op import sys import tempfile import time import zipfile from collections import OrderedDict from pathlib import Path from typing import cast import numpy as np from ..label import Label, read_labels_from_annot, write_labels_to_annot from ..utils import ( _pl, _safe_input, _validate_type, get_config, get_subjects_dir, logger, set_config, verbose, ) from ..utils.docs import _docformat, docdict from .config import MNE_DATASETS, _hcp_mmp_license_text _data_path_doc = """Get path to local copy of {name} dataset. Parameters ---------- path : None | str Location of where to look for the {name} dataset. If None, the environment variable or config parameter ``{conf}`` is used. If it doesn't exist, the "~/mne_data" directory is used. If the {name} dataset is not found under the given path, the data will be automatically downloaded to the specified folder. force_update : bool Force update of the {name} dataset even if a local copy exists. Default is False. update_path : bool | None If True (default), set the ``{conf}`` in mne-python config to the given path. If None, the user is prompted. download : bool If False and the {name} dataset has not been downloaded yet, it will not be downloaded and the path will be returned as '' (empty string). This is mostly used for debugging purposes and can be safely ignored by most users. %(verbose)s Returns ------- path : instance of Path Path to {name} dataset directory. """ _data_path_doc_accept = _data_path_doc.split("%(verbose)s") _data_path_doc_accept[-1] = "%(verbose)s" + _data_path_doc_accept[-1] _data_path_doc_accept.insert(1, " %(accept)s") _data_path_doc_accept = "".join(_data_path_doc_accept) _data_path_doc = _docformat(_data_path_doc, docdict) _data_path_doc_accept = _docformat(_data_path_doc_accept, docdict) _version_doc = """Get version of the local {name} dataset. Returns ------- version : str | None Version of the {name} local dataset, or None if the dataset does not exist locally. """ def _dataset_version(path, name): """Get the version of the dataset.""" ver_fname = op.join(path, "version.txt") if op.exists(ver_fname): with open(ver_fname) as fid: version = fid.readline().strip() # version is on first line else: logger.debug(f"Version file missing: {ver_fname}") # Sample dataset versioning was introduced after 0.3 # SPM dataset was introduced with 0.7 versions = dict(sample="0.7", spm="0.3") version = versions.get(name, "0.0") return version def _get_path(path, key, name): """Get a dataset path.""" # 1. Input _validate_type(path, ("path-like", None), path) if path is not None: return Path(path).expanduser() # 2. get_config(key) — unless key is None or "" (special get_config values) # 3. get_config('MNE_DATA') path = get_config(key or "MNE_DATA", get_config("MNE_DATA")) if path is not None: path = Path(path).expanduser() if not path.exists(): msg = ( f"Download location {path} as specified by MNE_DATA does " f"not exist. Either create this directory manually and try " f"again, or set MNE_DATA to an existing directory." ) raise FileNotFoundError(msg) return path # 4. ~/mne_data (but use a fake home during testing so we don't # unnecessarily create ~/mne_data) logger.info(f"Using default location ~/mne_data for {name}...") path = Path(os.getenv("_MNE_FAKE_HOME_DIR", "~")).expanduser() / "mne_data" if not path.is_dir(): logger.info(f"Creating {path}") try: path.mkdir() except OSError: raise OSError( "User does not have write permissions " f"at '{path}', try giving the path as an " "argument to data_path() where user has " "write permissions, for ex:data_path" "('/home/xyz/me2/')" ) return path def _do_path_update(path, update_path, key, name): """Update path.""" path = op.abspath(path) identical = get_config(key, "", use_env=False) == path if not identical: if update_path is None: update_path = True if "--update-dataset-path" in sys.argv: answer = "y" else: msg = ( f"Do you want to set the path:\n {path}\nas the default {name} " "dataset path in the mne-python config [y]/n? " ) answer = _safe_input(msg, alt="pass update_path=True") if answer.lower() == "n": update_path = False if update_path: set_config(key, str(path), set_env=False) return path # This is meant to be semi-public: let packages like mne-bids use it to make # sure they don't accidentally set download=True in their tests, too _MODULES_TO_ENSURE_DOWNLOAD_IS_FALSE_IN_TESTS = ("mne",) def _check_in_testing_and_raise(name, download): """Check if we're in an MNE test and raise an error if download!=False.""" root_dirs = [ importlib.import_module(ns) for ns in _MODULES_TO_ENSURE_DOWNLOAD_IS_FALSE_IN_TESTS ] root_dirs = [str(Path(ns.__file__).parent) for ns in root_dirs] check = False func = None frame = inspect.currentframe() try: # First, traverse out of the data_path() call while frame: if frame.f_code.co_name in ("data_path", "load_data"): func = frame.f_code.co_name frame = frame.f_back.f_back # out of verbose decorator break frame = frame.f_back # Next, see what the caller was while frame: fname = frame.f_code.co_filename if fname is not None: fname = Path(fname) # in mne namespace, and # (can't use is_relative_to here until 3.9) if any(str(fname).startswith(rd) for rd in root_dirs) and ( # in tests/*.py fname.parent.stem == "tests" or # or in a conftest.py fname.stem == "conftest.py" ): check = True break frame = frame.f_back finally: del frame if check and download is not False: raise RuntimeError( f"Do not download dataset {repr(name)} in tests, pass " f"{func}(download=False) to prevent accidental downloads" ) def _download_mne_dataset( name, processor, path, force_update, update_path, download, accept=False ) -> Path: """Aux function for downloading internal MNE datasets.""" import pooch from mne.datasets._fetch import fetch_dataset _check_in_testing_and_raise(name, download) # import pooch library for handling the dataset downloading dataset_params = MNE_DATASETS[name] dataset_params["dataset_name"] = name config_key = MNE_DATASETS[name]["config_key"] folder_name = MNE_DATASETS[name]["folder_name"] # get download path for specific dataset path = _get_path(path=path, key=config_key, name=name) # instantiate processor that unzips file if processor == "nested_untar": processor_ = pooch.Untar(extract_dir=op.join(path, folder_name)) elif processor == "nested_unzip": processor_ = pooch.Unzip(extract_dir=op.join(path, folder_name)) else: processor_ = processor # handle case of multiple sub-datasets with different urls if name == "visual_92_categories": dataset_params = [] for name in ["visual_92_categories_1", "visual_92_categories_2"]: this_dataset = MNE_DATASETS[name] this_dataset["dataset_name"] = name dataset_params.append(this_dataset) return cast( Path, fetch_dataset( dataset_params=dataset_params, processor=processor_, path=path, force_update=force_update, update_path=update_path, download=download, accept=accept, ), ) def _get_version(name): """Get a dataset version.""" from mne.datasets._fetch import fetch_dataset if not has_dataset(name): return None dataset_params = MNE_DATASETS[name] dataset_params["dataset_name"] = name config_key = MNE_DATASETS[name]["config_key"] # get download path for specific dataset path = _get_path(path=None, key=config_key, name=name) return fetch_dataset(dataset_params, path=path, return_version=True)[1] def has_dataset(name): """Check for presence of a dataset. Parameters ---------- name : str | dict The dataset to check. Strings refer to one of the supported datasets listed :ref:`here `. A :class:`dict` can be used to check for user-defined datasets (see the Notes section of :func:`fetch_dataset`), and must contain keys ``dataset_name``, ``archive_name``, ``url``, ``folder_name``, ``hash``. Returns ------- has : bool True if the dataset is present. """ from mne.datasets._fetch import fetch_dataset if isinstance(name, dict): dataset_name = name["dataset_name"] dataset_params = name else: dataset_name = "spm" if name == "spm_face" else name dataset_params = MNE_DATASETS[dataset_name] dataset_params["dataset_name"] = dataset_name config_key = dataset_params["config_key"] # get download path for specific dataset path = _get_path(path=None, key=config_key, name=dataset_name) dp = fetch_dataset(dataset_params, path=path, download=False, check_version=False) if dataset_name.startswith("bst_"): check = dataset_name else: check = MNE_DATASETS[dataset_name]["folder_name"] return str(dp).endswith(check) @verbose def _download_all_example_data(verbose=True): """Download all datasets used in examples and tutorials.""" # This function is designed primarily to be used by CircleCI, to: # # 1. Streamline data downloading # 2. Make CircleCI fail early (rather than later) if some necessary data # cannot be retrieved. # 3. Avoid download statuses and timing biases in rendered examples. # # verbose=True by default so we get nice status messages. # Consider adding datasets from here to CircleCI for PR-auto-build paths = dict() for kind in ( "sample testing misc spm_face somato hf_sef multimodal " "fnirs_motor opm mtrf fieldtrip_cmc kiloword phantom_kit phantom_4dbti " "refmeg_noise ssvep epilepsy_ecog ucl_opm_auditory eyelink " "erp_core brainstorm.bst_raw brainstorm.bst_auditory " "brainstorm.bst_resting brainstorm.bst_phantom_ctf " "brainstorm.bst_phantom_elekta phantom_kernel" ).split(): mod = importlib.import_module(f"mne.datasets.{kind}") data_path_func = getattr(mod, "data_path") kwargs = dict() if "accept" in inspect.getfullargspec(data_path_func).args: kwargs["accept"] = True paths[kind] = data_path_func(**kwargs) logger.info(f"[done {kind}]") # Now for the exceptions: from . import ( eegbci, fetch_fsaverage, fetch_hcp_mmp_parcellation, fetch_infant_template, fetch_phantom, limo, sleep_physionet, ) eegbci.load_data(1, [6, 10, 14], update_path=True) for subj in range(4): eegbci.load_data(subj + 1, runs=[3], update_path=True) logger.info("[done eegbci]") sleep_physionet.age.fetch_data(subjects=[0, 1], recording=[1]) logger.info("[done sleep_physionet]") # If the user has SUBJECTS_DIR, respect it, if not, set it to the EEG one # (probably on CircleCI, or otherwise advanced user) fetch_fsaverage(None) logger.info("[done fsaverage]") fetch_infant_template("6mo") logger.info("[done infant_template]") fetch_hcp_mmp_parcellation(subjects_dir=paths["sample"] / "subjects", accept=True) logger.info("[done hcp_mmp_parcellation]") fetch_phantom("otaniemi", subjects_dir=paths["brainstorm.bst_phantom_elekta"]) logger.info("[done phantom]") limo.load_data(subject=1, update_path=True) logger.info("[done limo]") @verbose def fetch_aparc_sub_parcellation(subjects_dir=None, verbose=None): """Fetch the modified subdivided aparc parcellation. This will download and install the subdivided aparc parcellation :footcite:'KhanEtAl2018' files for FreeSurfer's fsaverage to the specified directory. Parameters ---------- subjects_dir : path-like | None The subjects directory to use. The file will be placed in ``subjects_dir + '/fsaverage/label'``. %(verbose)s References ---------- .. footbibliography:: """ import pooch subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) destination = subjects_dir / "fsaverage" / "label" urls = dict(lh="https://osf.io/p92yb/download", rh="https://osf.io/4kxny/download") hashes = dict( lh="9e4d8d6b90242b7e4b0145353436ef77", rh="dd6464db8e7762d969fc1d8087cd211b" ) downloader = pooch.HTTPDownloader(**_downloader_params()) for hemi in ("lh", "rh"): fname = f"{hemi}.aparc_sub.annot" fpath = destination / fname if not fpath.is_file(): pooch.retrieve( url=urls[hemi], known_hash=f"md5:{hashes[hemi]}", path=destination, downloader=downloader, fname=fname, ) @verbose def fetch_hcp_mmp_parcellation( subjects_dir=None, combine=True, *, accept=False, verbose=None ): """Fetch the HCP-MMP parcellation. This will download and install the HCP-MMP parcellation :footcite:`GlasserEtAl2016` files for FreeSurfer's fsaverage :footcite:`Mills2016` to the specified directory. Parameters ---------- subjects_dir : path-like | None The subjects directory to use. The file will be placed in ``subjects_dir + '/fsaverage/label'``. combine : bool If True, also produce the combined/reduced set of 23 labels per hemisphere as ``HCPMMP1_combined.annot`` :footcite:`GlasserEtAl2016supp`. %(accept)s %(verbose)s Notes ----- Use of this parcellation is subject to terms of use on the `HCP-MMP webpage `_. References ---------- .. footbibliography:: """ import pooch subjects_dir = get_subjects_dir(subjects_dir, raise_error=True) destination = subjects_dir / "fsaverage" / "label" fnames = [destination / f"{hemi}.HCPMMP1.annot" for hemi in ("lh", "rh")] urls = dict( lh="https://ndownloader.figshare.com/files/5528816", rh="https://ndownloader.figshare.com/files/5528819", ) hashes = dict( lh="46a102b59b2fb1bb4bd62d51bf02e975", rh="75e96b331940227bbcb07c1c791c2463" ) if not all(fname.exists() for fname in fnames): if accept or "--accept-hcpmmp-license" in sys.argv: answer = "y" else: answer = _safe_input(f"{_hcp_mmp_license_text}\nAgree (y/[n])? ") if answer.lower() != "y": raise RuntimeError("You must agree to the license to use this dataset") downloader = pooch.HTTPDownloader(**_downloader_params()) for hemi, fpath in zip(("lh", "rh"), fnames): if not op.isfile(fpath): fname = fpath.name pooch.retrieve( url=urls[hemi], known_hash=f"md5:{hashes[hemi]}", path=destination, downloader=downloader, fname=fname, ) if combine: fnames = [ op.join(destination, f"{hemi}.HCPMMP1_combined.annot") for hemi in ("lh", "rh") ] if all(op.isfile(fname) for fname in fnames): return # otherwise, let's make them logger.info("Creating combined labels") groups = OrderedDict( [ ("Primary Visual Cortex (V1)", ("V1",)), ("Early Visual Cortex", ("V2", "V3", "V4")), ( "Dorsal Stream Visual Cortex", ("V3A", "V3B", "V6", "V6A", "V7", "IPS1"), ), ( "Ventral Stream Visual Cortex", ("V8", "VVC", "PIT", "FFC", "VMV1", "VMV2", "VMV3"), ), ( "MT+ Complex and Neighboring Visual Areas", ("V3CD", "LO1", "LO2", "LO3", "V4t", "FST", "MT", "MST", "PH"), ), ("Somatosensory and Motor Cortex", ("4", "3a", "3b", "1", "2")), ( "Paracentral Lobular and Mid Cingulate Cortex", ( "24dd", "24dv", "6mp", "6ma", "SCEF", "5m", "5L", "5mv", ), ), ("Premotor Cortex", ("55b", "6d", "6a", "FEF", "6v", "6r", "PEF")), ( "Posterior Opercular Cortex", ("43", "FOP1", "OP4", "OP1", "OP2-3", "PFcm"), ), ("Early Auditory Cortex", ("A1", "LBelt", "MBelt", "PBelt", "RI")), ( "Auditory Association Cortex", ( "A4", "A5", "STSdp", "STSda", "STSvp", "STSva", "STGa", "TA2", ), ), ( "Insular and Frontal Opercular Cortex", ( "52", "PI", "Ig", "PoI1", "PoI2", "FOP2", "FOP3", "MI", "AVI", "AAIC", "Pir", "FOP4", "FOP5", ), ), ( "Medial Temporal Cortex", ( "H", "PreS", "EC", "PeEc", "PHA1", "PHA2", "PHA3", ), ), ( "Lateral Temporal Cortex", ( "PHT", "TE1p", "TE1m", "TE1a", "TE2p", "TE2a", "TGv", "TGd", "TF", ), ), ( "Temporo-Parieto-Occipital Junction", ( "TPOJ1", "TPOJ2", "TPOJ3", "STV", "PSL", ), ), ( "Superior Parietal Cortex", ( "LIPv", "LIPd", "VIP", "AIP", "MIP", "7PC", "7AL", "7Am", "7PL", "7Pm", ), ), ( "Inferior Parietal Cortex", ( "PGp", "PGs", "PGi", "PFm", "PF", "PFt", "PFop", "IP0", "IP1", "IP2", ), ), ( "Posterior Cingulate Cortex", ( "DVT", "ProS", "POS1", "POS2", "RSC", "v23ab", "d23ab", "31pv", "31pd", "31a", "23d", "23c", "PCV", "7m", ), ), ( "Anterior Cingulate and Medial Prefrontal Cortex", ( "33pr", "p24pr", "a24pr", "p24", "a24", "p32pr", "a32pr", "d32", "p32", "s32", "8BM", "9m", "10v", "10r", "25", ), ), ( "Orbital and Polar Frontal Cortex", ( "47s", "47m", "a47r", "11l", "13l", "a10p", "p10p", "10pp", "10d", "OFC", "pOFC", ), ), ( "Inferior Frontal Cortex", ( "44", "45", "IFJp", "IFJa", "IFSp", "IFSa", "47l", "p47r", ), ), ( "DorsoLateral Prefrontal Cortex", ( "8C", "8Av", "i6-8", "s6-8", "SFL", "8BL", "9p", "9a", "8Ad", "p9-46v", "a9-46v", "46", "9-46d", ), ), ("???", ("???",)), ] ) assert len(groups) == 23 labels_out = list() for hemi in ("lh", "rh"): labels = read_labels_from_annot( "fsaverage", "HCPMMP1", hemi=hemi, subjects_dir=subjects_dir, sort=False ) label_names = [ "???" if label.name.startswith("???") else label.name.split("_")[1] for label in labels ] used = np.zeros(len(labels), bool) for key, want in groups.items(): assert "\t" not in key these_labels = [ li for li, label_name in enumerate(label_names) if label_name in want ] assert not used[these_labels].any() assert len(these_labels) == len(want) used[these_labels] = True these_labels = [labels[li] for li in these_labels] # take a weighted average to get the color # (here color == task activation) w = np.array([len(label.vertices) for label in these_labels]) w = w / float(w.sum()) color = np.dot(w, [label.color for label in these_labels]) these_labels = sum( these_labels, Label([], subject="fsaverage", hemi=hemi) ) these_labels.name = key these_labels.color = color labels_out.append(these_labels) assert used.all() assert len(labels_out) == 46 for hemi, side in (("lh", "left"), ("rh", "right")): table_name = f"./{side}.fsaverage164.label.gii" write_labels_to_annot( labels_out, "fsaverage", "HCPMMP1_combined", hemi=hemi, subjects_dir=subjects_dir, sort=False, table_name=table_name, ) def _manifest_check_download(manifest_path, destination, url, hash_): import pooch with open(manifest_path) as fid: names = [name.strip() for name in fid.readlines()] need = list() for name in names: if not (destination / name).is_file(): need.append(name) logger.info( "%d file%s missing from %s in %s" % (len(need), _pl(need), manifest_path.name, destination) ) if len(need) > 0: downloader = pooch.HTTPDownloader(**_downloader_params()) with tempfile.TemporaryDirectory() as path: logger.info("Downloading missing files remotely") path = Path(path) fname_path = path / "temp.zip" pooch.retrieve( url=url, known_hash=f"md5:{hash_}", path=path, downloader=downloader, fname=fname_path.name, ) logger.info(f"Extracting missing file{_pl(need)}") with zipfile.ZipFile(fname_path, "r") as ff: members = set(f for f in ff.namelist() if not f.endswith("/")) missing = sorted(members.symmetric_difference(set(names))) if len(missing): raise RuntimeError( "Zip file did not have correct names:\n{'\n'.join(missing)}" ) for name in need: ff.extract(name, path=destination) logger.info(f"Successfully extracted {len(need)} file{_pl(need)}") def _log_time_size(t0, sz): t = time.time() - t0 fmt = "%Ss" if t > 60: fmt = f"%Mm{fmt}" if t > 3600: fmt = f"%Hh{fmt}" sz = sz / 1048576 # 1024 ** 2 t = time.strftime(fmt, time.gmtime(t)) logger.info(f"Download complete in {t} ({sz:.1f} MB)") def _downloader_params(*, auth=None, token=None): params = dict(timeout=15) params["progressbar"] = ( logger.level <= logging.INFO and get_config("MNE_TQDM", "tqdm.auto") != "off" ) if auth is not None: params["auth"] = auth if token is not None: params["headers"] = {"Authorization": f"token {token}"} return params