# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. from __future__ import annotations # only needed for Python ≤ 3.9 import os.path as op import string import sys from collections import OrderedDict from copy import deepcopy from dataclasses import dataclass from functools import partial from pathlib import Path import numpy as np from scipy.io import loadmat from scipy.sparse import csr_array, lil_array from scipy.spatial import Delaunay from scipy.stats import zscore from .._fiff.constants import FIFF from .._fiff.meas_info import ( # noqa F401 Info, MontageMixin, _merge_info, _rename_comps, _unit2human, # TODO: pybv relies on this, should be made public create_info, ) from .._fiff.pick import ( _check_excludes_includes, _pick_data_channels, _picks_by_type, _picks_to_idx, _second_rules, channel_indices_by_type, channel_type, pick_channels, pick_info, pick_types, ) from .._fiff.proj import setup_proj from .._fiff.reference import add_reference_channels, set_eeg_reference from .._fiff.tag import _rename_list from ..bem import _check_origin from ..defaults import HEAD_SIZE_DEFAULT, _handle_default from ..utils import ( _check_dict_keys, _check_fname, _check_option, _check_preload, _get_stim_channel, _on_missing, _validate_type, fill_doc, legacy, logger, verbose, warn, ) def _get_meg_system(info): """Educated guess for the helmet type based on channels.""" have_helmet = True for ch in info["chs"]: if ch["kind"] == FIFF.FIFFV_MEG_CH: # Only take first 16 bits, as higher bits store CTF grad comp order coil_type = ch["coil_type"] & 0xFFFF nmag = np.sum([c["kind"] == FIFF.FIFFV_MEG_CH for c in info["chs"]]) if coil_type == FIFF.FIFFV_COIL_NM_122: system = "122m" break elif coil_type // 1000 == 3: # All Vectorview coils are 30xx system = "306m" break elif ( coil_type == FIFF.FIFFV_COIL_MAGNES_MAG or coil_type == FIFF.FIFFV_COIL_MAGNES_GRAD ): system = "Magnes_3600wh" if nmag > 150 else "Magnes_2500wh" break elif coil_type == FIFF.FIFFV_COIL_CTF_GRAD: system = "CTF_275" break elif coil_type == FIFF.FIFFV_COIL_KIT_GRAD: system = "KIT" # Our helmet does not match very well, so let's just create it have_helmet = False break elif coil_type == FIFF.FIFFV_COIL_BABY_GRAD: system = "BabySQUID" break elif coil_type == FIFF.FIFFV_COIL_ARTEMIS123_GRAD: system = "ARTEMIS123" have_helmet = False break elif coil_type == FIFF.FIFFV_COIL_KERNEL_OPM_MAG_GEN1: system = "Kernel_Flux" have_helmet = True break else: system = "unknown" have_helmet = False return system, have_helmet @verbose def equalize_channels(instances, copy=True, verbose=None): """Equalize channel picks and ordering across multiple MNE-Python objects. First, all channels that are not common to each object are dropped. Then, using the first object in the list as a template, the channels of each object are re-ordered to match the template. The end result is that all given objects define the same channels, in the same order. Parameters ---------- instances : list A list of MNE-Python objects to equalize the channels for. Objects can be of type Raw, Epochs, Evoked, AverageTFR, Forward, Covariance, CrossSpectralDensity or Info. copy : bool When dropping and/or re-ordering channels, an object will be copied when this parameter is set to ``True``. When set to ``False`` (the default) the dropping and re-ordering of channels happens in-place. .. versionadded:: 0.20.0 %(verbose)s Returns ------- equalized_instances : list A list of MNE-Python objects that have the same channels defined in the same order. Notes ----- This function operates inplace. """ from ..cov import Covariance from ..epochs import BaseEpochs from ..evoked import Evoked from ..forward import Forward from ..io import BaseRaw from ..time_frequency import BaseTFR, CrossSpectralDensity # Instances need to have a `ch_names` attribute and a `pick_channels` # method that supports `ordered=True`. allowed_types = ( BaseRaw, BaseEpochs, Evoked, BaseTFR, Forward, Covariance, CrossSpectralDensity, Info, ) allowed_types_str = ( "Raw, Epochs, Evoked, TFR, Forward, Covariance, CrossSpectralDensity or Info" ) for inst in instances: _validate_type( inst, allowed_types, "Instances to be modified", allowed_types_str ) chan_template = instances[0].ch_names logger.info("Identifying common channels ...") channels = [set(inst.ch_names) for inst in instances] common_channels = set(chan_template).intersection(*channels) all_channels = set(chan_template).union(*channels) dropped = list(set(all_channels - common_channels)) # Preserve the order of chan_template order = np.argsort([chan_template.index(ch) for ch in common_channels]) common_channels = np.array(list(common_channels))[order].tolist() # Update all instances to match the common_channels list reordered = False equalized_instances = [] for inst in instances: # Only perform picking when needed if inst.ch_names != common_channels: if isinstance(inst, Info): sel = pick_channels( inst.ch_names, common_channels, exclude=[], ordered=True ) inst = pick_info(inst, sel, copy=copy, verbose=False) else: if copy: inst = inst.copy() # TODO change to .pick() once CSD, Cov, and Fwd have `.pick()` methods inst.pick_channels(common_channels, ordered=True) if len(inst.ch_names) == len(common_channels): reordered = True equalized_instances.append(inst) if dropped: logger.info(f"Dropped the following channels:\n{dropped}") elif reordered: logger.info("Channels have been re-ordered.") return equalized_instances def unify_bad_channels(insts): """Unify bad channels across a list of instances. All instances must be of the same type and have matching channel names and channel order. The ``.info["bads"]`` of each instance will be set to the union of ``.info["bads"]`` across all instances. Parameters ---------- insts : list List of instances (:class:`~mne.io.Raw`, :class:`~mne.Epochs`, :class:`~mne.Evoked`, :class:`~mne.time_frequency.Spectrum`, :class:`~mne.time_frequency.EpochsSpectrum`) across which to unify bad channels. Returns ------- insts : list List of instances with bad channels unified across instances. See Also -------- mne.channels.equalize_channels mne.channels.rename_channels mne.channels.combine_channels Notes ----- This function modifies the instances in-place. .. versionadded:: 1.6 """ from ..epochs import Epochs from ..evoked import Evoked from ..io import BaseRaw from ..time_frequency.spectrum import BaseSpectrum # ensure input is list-like _validate_type(insts, (list, tuple), "insts") # ensure non-empty if len(insts) == 0: raise ValueError("insts must not be empty") # ensure all insts are MNE objects, and all the same type inst_type = type(insts[0]) valid_types = (BaseRaw, Epochs, Evoked, BaseSpectrum) for inst in insts: _validate_type(inst, valid_types, "each object in insts") if type(inst) is not inst_type: raise ValueError("All insts must be the same type") # ensure all insts have the same channels and channel order ch_names = insts[0].ch_names for inst in insts[1:]: dif = set(inst.ch_names) ^ set(ch_names) if len(dif): raise ValueError( "Channels do not match across the objects in insts. Consider calling " "equalize_channels before calling this function." ) elif inst.ch_names != ch_names: raise ValueError( "Channel names are sorted differently across instances. Please use " "mne.channels.equalize_channels." ) # collect bads as dict keys so that insertion order is preserved, then cast to list all_bads = dict() for inst in insts: all_bads.update(dict.fromkeys(inst.info["bads"])) all_bads = list(all_bads) # update bads on all instances for inst in insts: inst.info["bads"] = all_bads return insts class ReferenceMixin(MontageMixin): """Mixin class for Raw, Evoked, Epochs.""" @verbose def set_eeg_reference( self, ref_channels="average", projection=False, ch_type="auto", forward=None, *, joint=False, verbose=None, ): """Specify which reference to use for EEG data. Use this function to explicitly specify the desired reference for EEG. This can be either an existing electrode or a new virtual channel. This function will re-reference the data according to the desired reference. Parameters ---------- %(ref_channels_set_eeg_reference)s %(projection_set_eeg_reference)s %(ch_type_set_eeg_reference)s %(forward_set_eeg_reference)s %(joint_set_eeg_reference)s %(verbose)s Returns ------- inst : instance of Raw | Epochs | Evoked Data with EEG channels re-referenced. If ``ref_channels='average'`` and ``projection=True`` a projection will be added instead of directly re-referencing the data. %(set_eeg_reference_see_also_notes)s """ return set_eeg_reference( self, ref_channels=ref_channels, copy=False, projection=projection, ch_type=ch_type, forward=forward, joint=joint, )[0] class UpdateChannelsMixin: """Mixin class for Raw, Evoked, Epochs, Spectrum, AverageTFR.""" @verbose @legacy(alt="inst.pick(...)") def pick_types( self, meg=False, eeg=False, stim=False, eog=False, ecg=False, emg=False, ref_meg="auto", *, misc=False, resp=False, chpi=False, exci=False, ias=False, syst=False, seeg=False, dipole=False, gof=False, bio=False, ecog=False, fnirs=False, csd=False, dbs=False, temperature=False, gsr=False, eyetrack=False, include=(), exclude="bads", selection=None, verbose=None, ): """Pick some channels by type and names. Parameters ---------- %(pick_types_params)s %(verbose)s Returns ------- inst : instance of Raw, Epochs, or Evoked The modified instance. See Also -------- pick_channels Notes ----- .. versionadded:: 0.9.0 """ idx = pick_types( self.info, meg=meg, eeg=eeg, stim=stim, eog=eog, ecg=ecg, emg=emg, ref_meg=ref_meg, misc=misc, resp=resp, chpi=chpi, exci=exci, ias=ias, syst=syst, seeg=seeg, dipole=dipole, gof=gof, bio=bio, ecog=ecog, fnirs=fnirs, csd=csd, dbs=dbs, temperature=temperature, gsr=gsr, eyetrack=eyetrack, include=include, exclude=exclude, selection=selection, ) self._pick_drop_channels(idx) # remove dropped channel types from reject and flat if getattr(self, "reject", None) is not None: # use list(self.reject) to avoid RuntimeError for changing dictionary size # during iteration for ch_type in list(self.reject): if ch_type not in self: del self.reject[ch_type] if getattr(self, "flat", None) is not None: for ch_type in list(self.flat): if ch_type not in self: del self.flat[ch_type] return self @verbose @legacy(alt="inst.pick(...)") def pick_channels(self, ch_names, ordered=True, *, verbose=None): """Pick some channels. Parameters ---------- ch_names : list The list of channels to select. %(ordered)s %(verbose)s .. versionadded:: 1.1 Returns ------- inst : instance of Raw, Epochs, or Evoked The modified instance. See Also -------- drop_channels pick_types reorder_channels Notes ----- The channel names given are assumed to be a set, i.e. the order does not matter. The original order of the channels is preserved. You can use ``reorder_channels`` to set channel order if necessary. .. versionadded:: 0.9.0 """ picks = pick_channels(self.info["ch_names"], ch_names, ordered=ordered) return self._pick_drop_channels(picks) @verbose def pick(self, picks, exclude=(), *, verbose=None): """Pick a subset of channels. Parameters ---------- %(picks_all)s exclude : list | str Set of channels to exclude, only used when picking based on types (e.g., exclude="bads" when picks="meg"). %(verbose)s .. versionadded:: 0.24.0 Returns ------- inst : instance of Raw, Epochs, or Evoked The modified instance. """ picks = _picks_to_idx(self.info, picks, "all", exclude, allow_empty=False) self._pick_drop_channels(picks) # remove dropped channel types from reject and flat if getattr(self, "reject", None) is not None: # use list(self.reject) to avoid RuntimeError for changing dictionary size # during iteration for ch_type in list(self.reject): if ch_type not in self: del self.reject[ch_type] if getattr(self, "flat", None) is not None: for ch_type in list(self.flat): if ch_type not in self: del self.flat[ch_type] return self def reorder_channels(self, ch_names): """Reorder channels. Parameters ---------- ch_names : list The desired channel order. Returns ------- inst : instance of Raw, Epochs, or Evoked The modified instance. See Also -------- drop_channels pick_types pick_channels Notes ----- Channel names must be unique. Channels that are not in ``ch_names`` are dropped. .. versionadded:: 0.16.0 """ _check_excludes_includes(ch_names) idx = list() for ch_name in ch_names: ii = self.ch_names.index(ch_name) if ii in idx: raise ValueError(f"Channel name repeated: {ch_name}") idx.append(ii) return self._pick_drop_channels(idx) @fill_doc def drop_channels(self, ch_names, on_missing="raise"): """Drop channel(s). Parameters ---------- ch_names : iterable or str Iterable (e.g. list) of channel name(s) or channel name to remove. %(on_missing_ch_names)s Returns ------- inst : instance of Raw, Epochs, or Evoked The modified instance. See Also -------- reorder_channels pick_channels pick_types Notes ----- .. versionadded:: 0.9.0 """ if isinstance(ch_names, str): ch_names = [ch_names] try: all_str = all([isinstance(ch, str) for ch in ch_names]) except TypeError: raise ValueError( f"'ch_names' must be iterable, got type {type(ch_names)} ({ch_names})." ) if not all_str: raise ValueError( "Each element in 'ch_names' must be str, got " f"{[type(ch) for ch in ch_names]}." ) missing = [ch for ch in ch_names if ch not in self.ch_names] if len(missing) > 0: msg = "Channel(s) {0} not found, nothing dropped." _on_missing(on_missing, msg.format(", ".join(missing))) bad_idx = [self.ch_names.index(ch) for ch in ch_names if ch in self.ch_names] idx = np.setdiff1d(np.arange(len(self.ch_names)), bad_idx) if len(idx) == 0: raise ValueError("All channels would be dropped.") return self._pick_drop_channels(idx) @verbose def _pick_drop_channels(self, idx, *, verbose=None): # avoid circular imports from ..io import BaseRaw msg = "adding, dropping, or reordering channels" if isinstance(self, BaseRaw): if self._projector is not None: _check_preload(self, f"{msg} after calling .apply_proj()") else: _check_preload(self, msg) if getattr(self, "picks", None) is not None: self.picks = self.picks[idx] if getattr(self, "_read_picks", None) is not None: self._read_picks = [r[idx] for r in self._read_picks] if hasattr(self, "_cals"): self._cals = self._cals[idx] pick_info(self.info, idx, copy=False) for key in ("_comp", "_projector"): mat = getattr(self, key, None) if mat is not None: setattr(self, key, mat[idx][:, idx]) if hasattr(self, "_dims"): # Spectrum and "new-style" TFRs axis = self._dims.index("channel") else: # All others (Evoked, Epochs, Raw) have chs axis=-2 axis = -2 if hasattr(self, "_data"): # skip non-preloaded Raw self._data = self._data.take(idx, axis=axis) else: assert isinstance(self, BaseRaw) and not self.preload if isinstance(self, BaseRaw): self.annotations._prune_ch_names(self.info, on_missing="ignore") self._orig_units = { k: v for k, v in self._orig_units.items() if k in self.ch_names } self._pick_projs() return self def _pick_projs(self): """Keep only projectors which apply to at least 1 data channel.""" drop_idx = [] for idx, proj in enumerate(self.info["projs"]): if not set(self.info["ch_names"]) & set(proj["data"]["col_names"]): drop_idx.append(idx) for idx in drop_idx: logger.info(f"Removing projector {self.info['projs'][idx]}") if drop_idx and hasattr(self, "del_proj"): self.del_proj(drop_idx) return self def add_channels(self, add_list, force_update_info=False): """Append new channels to the instance. Parameters ---------- add_list : list A list of objects to append to self. Must contain all the same type as the current object. force_update_info : bool If True, force the info for objects to be appended to match the values in ``self``. This should generally only be used when adding stim channels for which important metadata won't be overwritten. .. versionadded:: 0.12 Returns ------- inst : instance of Raw, Epochs, or Evoked The modified instance. See Also -------- drop_channels Notes ----- If ``self`` is a Raw instance that has been preloaded into a :obj:`numpy.memmap` instance, the memmap will be resized. """ # avoid circular imports from ..epochs import BaseEpochs from ..io import BaseRaw from ..time_frequency import EpochsTFR _validate_type(add_list, (list, tuple), "Input") # Object-specific checks for inst in add_list + [self]: _check_preload(inst, "adding channels") if isinstance(self, BaseRaw): con_axis = 0 comp_class = BaseRaw elif isinstance(self, BaseEpochs): con_axis = 1 comp_class = BaseEpochs elif isinstance(self, EpochsTFR): con_axis = 1 comp_class = EpochsTFR else: con_axis = 0 comp_class = type(self) for inst in add_list: _validate_type(inst, comp_class, "All input") data = [inst._data for inst in [self] + add_list] # Make sure that all dimensions other than channel axis are the same compare_axes = [i for i in range(data[0].ndim) if i != con_axis] shapes = np.array([dat.shape for dat in data])[:, compare_axes] for shape in shapes: if not ((shapes[0] - shape) == 0).all(): raise ValueError( "All data dimensions except channels must match, got " f"{shapes[0]} != {shape}" ) del shapes # Create final data / info objects infos = [self.info] + [inst.info for inst in add_list] new_info = _merge_info(infos, force_update_to_first=force_update_info) # Now update the attributes if ( isinstance(self._data, np.memmap) and con_axis == 0 and sys.platform != "darwin" ): # resizing not available--no mremap # Use a resize and fill in other ones out_shape = (sum(d.shape[0] for d in data),) + data[0].shape[1:] n_bytes = np.prod(out_shape) * self._data.dtype.itemsize self._data.flush() self._data.base.resize(n_bytes) self._data = np.memmap( self._data.filename, mode="r+", dtype=self._data.dtype, shape=out_shape ) assert self._data.shape == out_shape assert self._data.nbytes == n_bytes offset = len(data[0]) for d in data[1:]: this_len = len(d) self._data[offset : offset + this_len] = d offset += this_len else: self._data = np.concatenate(data, axis=con_axis) self.info = new_info if isinstance(self, BaseRaw): self._cals = np.concatenate( [getattr(inst, "_cals") for inst in [self] + add_list] ) # We should never use these since data are preloaded, let's just # set it to something large and likely to break (2 ** 31 - 1) extra_idx = [2147483647] * sum(info["nchan"] for info in infos[1:]) assert all(len(r) == infos[0]["nchan"] for r in self._read_picks) self._read_picks = [ np.concatenate([r, extra_idx]) for r in self._read_picks ] assert all(len(r) == self.info["nchan"] for r in self._read_picks) for other in add_list: self._orig_units.update(other._orig_units) elif isinstance(self, BaseEpochs): self.picks = np.arange(self._data.shape[1]) if hasattr(self, "_projector"): activate = False if self._do_delayed_proj else self.proj self._projector, self.info = setup_proj( self.info, False, activate=activate ) return self @fill_doc def add_reference_channels(self, ref_channels): """Add reference channels to data that consists of all zeros. Adds reference channels to data that were not included during recording. This is useful when you need to re-reference your data to different channels. These added channels will consist of all zeros. Parameters ---------- %(ref_channels)s Returns ------- inst : instance of Raw | Epochs | Evoked The modified instance. """ return add_reference_channels(self, ref_channels, copy=False) class InterpolationMixin: """Mixin class for Raw, Evoked, Epochs.""" @verbose def interpolate_bads( self, reset_bads=True, mode="accurate", origin="auto", method=None, exclude=(), verbose=None, ): """Interpolate bad MEG and EEG channels. Operates in place. Parameters ---------- reset_bads : bool If True, remove the bads from info. mode : str Either ``'accurate'`` or ``'fast'``, determines the quality of the Legendre polynomial expansion used for interpolation of channels using the minimum-norm method. origin : array-like, shape (3,) | str Origin of the sphere in the head coordinate frame and in meters. Can be ``'auto'`` (default), which means a head-digitization-based origin fit. .. versionadded:: 0.17 method : dict | str | None Method to use for each channel type. - ``"meg"`` channels support ``"MNE"`` (default) and ``"nan"`` - ``"eeg"`` channels support ``"spline"`` (default), ``"MNE"`` and ``"nan"`` - ``"fnirs"`` channels support ``"nearest"`` (default) and ``"nan"`` - ``"ecog"`` channels support ``"spline"`` (default) and ``"nan"`` - ``"seeg"`` channels support ``"spline"`` (default) and ``"nan"`` None is an alias for:: method=dict(meg="MNE", eeg="spline", fnirs="nearest") If a :class:`str` is provided, the method will be applied to all channel types supported and available in the instance. The method ``"nan"`` will replace the channel data with ``np.nan``. .. warning:: Be careful when using ``method="nan"``; the default value ``reset_bads=True`` may not be what you want. .. versionadded:: 0.21 exclude : list | tuple The channels to exclude from interpolation. If excluded a bad channel will stay in bads. %(verbose)s Returns ------- inst : instance of Raw, Epochs, or Evoked The modified instance. Notes ----- The ``"MNE"`` method uses minimum-norm projection to a sphere and back. .. versionadded:: 0.9.0 """ from .interpolation import ( _interpolate_bads_ecog, _interpolate_bads_eeg, _interpolate_bads_meeg, _interpolate_bads_nan, _interpolate_bads_nirs, _interpolate_bads_seeg, ) _check_preload(self, "interpolation") _validate_type(method, (dict, str, None), "method") method = _handle_default("interpolation_method", method) ch_types = self.get_channel_types(unique=True) # figure out if we have "mag" for "meg", "hbo" for "fnirs", ... to filter the # "method" dictionary and keep only keys that correspond to existing channels. for ch_type in ("meg", "fnirs"): for sub_ch_type in _second_rules[ch_type][1].values(): if sub_ch_type in ch_types: ch_types.remove(sub_ch_type) if ch_type not in ch_types: ch_types.append(ch_type) keys2delete = set(method) - set(ch_types) for key in keys2delete: del method[key] valids = { "eeg": ("spline", "MNE", "nan"), "meg": ("MNE", "nan"), "fnirs": ("nearest", "nan"), "ecog": ("spline", "nan"), "seeg": ("spline", "nan"), } for key in method: _check_option("method[key]", key, tuple(valids)) _check_option(f"method['{key}']", method[key], valids[key]) logger.info("Setting channel interpolation method to %s.", method) idx = _picks_to_idx(self.info, list(method), exclude=(), allow_empty=True) if idx.size == 0 or len(pick_info(self.info, idx)["bads"]) == 0: warn("No bad channels to interpolate. Doing nothing...") return self for ch_type in method.copy(): idx = _picks_to_idx(self.info, ch_type, exclude=(), allow_empty=True) if len(pick_info(self.info, idx)["bads"]) == 0: method.pop(ch_type) logger.info("Interpolating bad channels.") needs_origin = [key != "seeg" and val != "nan" for key, val in method.items()] if any(needs_origin): origin = _check_origin(origin, self.info) for ch_type, interp in method.items(): if interp == "nan": _interpolate_bads_nan(self, ch_type, exclude=exclude) if method.get("eeg", "") == "spline": _interpolate_bads_eeg(self, origin=origin, exclude=exclude) meg_mne = method.get("meg", "") == "MNE" eeg_mne = method.get("eeg", "") == "MNE" if meg_mne or eeg_mne: _interpolate_bads_meeg( self, mode=mode, meg=meg_mne, eeg=eeg_mne, origin=origin, exclude=exclude, method=method, ) if method.get("fnirs", "") == "nearest": _interpolate_bads_nirs(self, exclude=exclude) if method.get("ecog", "") == "spline": _interpolate_bads_ecog(self, origin=origin, exclude=exclude) if method.get("seeg", "") == "spline": _interpolate_bads_seeg(self, exclude=exclude) if reset_bads is True: if "nan" in method.values(): warn( "interpolate_bads was called with method='nan' and " "reset_bads=True. Consider setting reset_bads=False so that the " "nan-containing channels can be easily excluded from later " "computations." ) self.info["bads"] = [ch for ch in self.info["bads"] if ch in exclude] return self @verbose def rename_channels(info, mapping, allow_duplicates=False, *, verbose=None): """Rename channels. Parameters ---------- %(info_not_none)s Note: modified in place. %(mapping_rename_channels_duplicates)s %(verbose)s """ _validate_type(info, Info, "info") info._check_consistency() bads = list(info["bads"]) # make our own local copies ch_names = list(info["ch_names"]) # first check and assemble clean mappings of index and name if isinstance(mapping, dict): _check_dict_keys( mapping, ch_names, key_description="channel name(s)", valid_key_source="info", ) new_names = [ (ch_names.index(ch_name), new_name) for ch_name, new_name in mapping.items() ] elif callable(mapping): new_names = [(ci, mapping(ch_name)) for ci, ch_name in enumerate(ch_names)] else: raise ValueError(f"mapping must be callable or dict, not {type(mapping)}") # check we got all strings out of the mapping for new_name in new_names: _validate_type(new_name[1], "str", "New channel mappings") # do the remapping locally for c_ind, new_name in new_names: for bi, bad in enumerate(bads): if bad == ch_names[c_ind]: bads[bi] = new_name ch_names[c_ind] = new_name # check that all the channel names are unique if len(ch_names) != len(np.unique(ch_names)) and not allow_duplicates: raise ValueError("New channel names are not unique, renaming failed") # do the remapping in info info["bads"] = [] ch_names_mapping = dict() for ch, ch_name in zip(info["chs"], ch_names): ch_names_mapping[ch["ch_name"]] = ch_name ch["ch_name"] = ch_name # .get b/c fwd info omits it _rename_comps(info.get("comps", []), ch_names_mapping) if "projs" in info: # fwd might omit it for proj in info["projs"]: proj["data"]["col_names"][:] = _rename_list( proj["data"]["col_names"], ch_names_mapping ) info._update_redundant() info["bads"] = bads info._check_consistency() def _recursive_flatten(cell, dtype): """Unpack mat files in Python.""" if len(cell) > 0: while not isinstance(cell[0], dtype): cell = [c for d in cell for c in d] return cell @dataclass class _BuiltinChannelAdjacency: name: str description: str fname: str source_url: str | None _ft_neighbor_url_t = string.Template( "https://github.com/fieldtrip/fieldtrip/raw/master/template/neighbours/$fname" ) _BUILTIN_CHANNEL_ADJACENCIES = [ _BuiltinChannelAdjacency( name="biosemi16", description="Biosemi 16-electrode cap", fname="biosemi16_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="biosemi16_neighb.mat"), ), _BuiltinChannelAdjacency( name="biosemi32", description="Biosemi 32-electrode cap", fname="biosemi32_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="biosemi32_neighb.mat"), ), _BuiltinChannelAdjacency( name="biosemi64", description="Biosemi 64-electrode cap", fname="biosemi64_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="biosemi64_neighb.mat"), ), _BuiltinChannelAdjacency( name="bti148", description="BTI 148-channel system", fname="bti148_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="bti148_neighb.mat"), ), _BuiltinChannelAdjacency( name="bti248", description="BTI 248-channel system", fname="bti248_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="bti248_neighb.mat"), ), _BuiltinChannelAdjacency( name="bti248grad", description="BTI 248 gradiometer system", fname="bti248grad_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="bti248grad_neighb.mat"), ), _BuiltinChannelAdjacency( name="ctf64", description="CTF 64 axial gradiometer", fname="ctf64_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="ctf64_neighb.mat"), ), _BuiltinChannelAdjacency( name="ctf151", description="CTF 151 axial gradiometer", fname="ctf151_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="ctf151_neighb.mat"), ), _BuiltinChannelAdjacency( name="ctf275", description="CTF 275 axial gradiometer", fname="ctf275_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="ctf275_neighb.mat"), ), _BuiltinChannelAdjacency( name="easycap32ch-avg", description="", fname="easycap32ch-avg_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="easycap32ch-avg_neighb.mat"), ), _BuiltinChannelAdjacency( name="easycap64ch-avg", description="", fname="easycap64ch-avg_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="easycap64ch-avg_neighb.mat"), ), _BuiltinChannelAdjacency( name="easycap128ch-avg", description="", fname="easycap128ch-avg_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="easycap128ch-avg_neighb.mat"), ), _BuiltinChannelAdjacency( name="easycapM1", description="Easycap M1", fname="easycapM1_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="easycapM1_neighb.mat"), ), _BuiltinChannelAdjacency( name="easycapM11", description="Easycap M11", fname="easycapM11_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="easycapM11_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="easycapM14", description="Easycap M14", fname="easycapM14_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="easycapM14_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="easycapM15", description="Easycap M15", fname="easycapM15_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="easycapM15_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="KIT-157", description="", fname="KIT-157_neighb.mat", source_url=None, ), _BuiltinChannelAdjacency( name="KIT-208", description="", fname="KIT-208_neighb.mat", source_url=None, ), _BuiltinChannelAdjacency( name="KIT-NYU-2019", description="", fname="KIT-NYU-2019_neighb.mat", source_url=None, ), _BuiltinChannelAdjacency( name="KIT-UMD-1", description="", fname="KIT-UMD-1_neighb.mat", source_url=None, ), _BuiltinChannelAdjacency( name="KIT-UMD-2", description="", fname="KIT-UMD-2_neighb.mat", source_url=None, ), _BuiltinChannelAdjacency( name="KIT-UMD-3", description="", fname="KIT-UMD-3_neighb.mat", source_url=None, ), _BuiltinChannelAdjacency( name="KIT-UMD-4", description="", fname="KIT-UMD-4_neighb.mat", source_url=None, ), _BuiltinChannelAdjacency( name="neuromag306mag", description="Neuromag306, only magnetometers", fname="neuromag306mag_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="neuromag306mag_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="neuromag306planar", description="Neuromag306, only planar gradiometers", fname="neuromag306planar_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="neuromag306planar_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="neuromag122cmb", description="Neuromag122, only combined planar gradiometers", fname="neuromag122cmb_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="neuromag122cmb_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="neuromag306cmb", description="Neuromag306, only combined planar gradiometers", fname="neuromag306cmb_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="neuromag306cmb_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="ecog256", description="ECOG 256channels, average referenced", fname="ecog256_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="ecog256_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="ecog256bipolar", description="ECOG 256channels, bipolar referenced", fname="ecog256bipolar_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="ecog256bipolar_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="eeg1010_neighb", description="", fname="eeg1010_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="eeg1010_neighb.mat"), ), _BuiltinChannelAdjacency( name="elec1005", description="Standard 10-05 system", fname="elec1005_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="elec1005_neighb.mat"), ), _BuiltinChannelAdjacency( name="elec1010", description="Standard 10-10 system", fname="elec1010_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="elec1010_neighb.mat"), ), _BuiltinChannelAdjacency( name="elec1020", description="Standard 10-20 system", fname="elec1020_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="elec1020_neighb.mat"), ), _BuiltinChannelAdjacency( name="itab28", description="ITAB 28-channel system", fname="itab28_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="itab28_neighb.mat"), ), _BuiltinChannelAdjacency( name="itab153", description="ITAB 153-channel system", fname="itab153_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="itab153_neighb.mat"), ), _BuiltinChannelAdjacency( name="language29ch-avg", description="MPI for Psycholinguistic: Averaged 29-channel cap", fname="language29ch-avg_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="language29ch-avg_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="mpi_59_channels", description="MPI for Psycholinguistic: 59-channel cap", fname="mpi_59_channels_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="mpi_59_channels_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="yokogawa160", description="", fname="yokogawa160_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="yokogawa160_neighb.mat"), # noqa: E501 ), _BuiltinChannelAdjacency( name="yokogawa440", description="", fname="yokogawa440_neighb.mat", source_url=_ft_neighbor_url_t.substitute(fname="yokogawa440_neighb.mat"), # noqa: E501 ), ] @fill_doc def get_builtin_ch_adjacencies(*, descriptions=False): """Get a list of all FieldTrip neighbor definitions shipping with MNE. The names of the these neighbor definitions can be passed to :func:`read_ch_adjacency`. Parameters ---------- descriptions : bool Whether to return not only the neighbor definition names, but also their corresponding descriptions. If ``True``, a list of tuples is returned, where the first tuple element is the neighbor definition name and the second is the description. If ``False`` (default), only the names are returned. Returns ------- neighbor_name : list of str | list of tuple If ``descriptions=False``, the names of all builtin FieldTrip neighbor definitions that can be loaded directly via :func:`read_ch_adjacency`. If ``descriptions=True``, a list of tuples ``(name, description)``. Notes ----- .. versionadded:: 1.1 """ if descriptions: return sorted( [(m.name, m.description) for m in _BUILTIN_CHANNEL_ADJACENCIES], key=lambda x: x[0].casefold(), # only sort based on name ) else: return sorted([m.name for m in _BUILTIN_CHANNEL_ADJACENCIES], key=str.casefold) @fill_doc def read_ch_adjacency(fname, picks=None): """Read a channel adjacency ("neighbors") file that ships with MNE. More information on these neighbor definitions can be found on the related `FieldTrip documentation pages `__. Parameters ---------- fname : path-like | str The path to the file to load, or the name of a channel adjacency matrix that ships with MNE-Python. .. note:: You can retrieve the names of all built-in channel adjacencies via :func:`mne.channels.get_builtin_ch_adjacencies`. %(picks_all_notypes)s Returns ------- ch_adjacency : scipy.sparse.csr_array, shape (n_channels, n_channels) The adjacency matrix. ch_names : list The list of channel names present in adjacency matrix. See Also -------- get_builtin_ch_adjacencies mne.viz.plot_ch_adjacency find_ch_adjacency mne.stats.combine_adjacency Notes ----- If the neighbor definition you need is not shipped by MNE-Python, you may use :func:`find_ch_adjacency` to compute the adjacency matrix based on your 2D sensor locations. Note that depending on your use case, you may need to additionally use :func:`mne.stats.combine_adjacency` to prepare a final "adjacency" to pass to the eventual function. """ if op.isabs(fname): fname = str( _check_fname( fname=fname, overwrite="read", must_exist=True, ) ) else: # built-in FieldTrip neighbors ch_adj_name = fname del fname if ch_adj_name.endswith("_neighb.mat"): # backward-compat ch_adj_name = ch_adj_name.replace("_neighb.mat", "") if ch_adj_name not in get_builtin_ch_adjacencies(): raise ValueError( f"No built-in channel adjacency matrix found with name: " f"{ch_adj_name}. Valid names are: " f'{", ".join(get_builtin_ch_adjacencies())}' ) ch_adj = [a for a in _BUILTIN_CHANNEL_ADJACENCIES if a.name == ch_adj_name][0] fname = ch_adj.fname templates_dir = Path(__file__).resolve().parent / "data" / "neighbors" fname = str( _check_fname( # only needed to convert to a string fname=templates_dir / fname, overwrite="read", must_exist=True, ) ) nb = loadmat(fname)["neighbours"] ch_names = _recursive_flatten(nb["label"], str) temp_info = create_info(ch_names, 1.0) picks = _picks_to_idx(temp_info, picks, none="all") neighbors = [_recursive_flatten(c, str) for c in nb["neighblabel"].flatten()] assert len(ch_names) == len(neighbors) adjacency = _ch_neighbor_adjacency(ch_names, neighbors) # picking before constructing matrix is buggy adjacency = adjacency[picks][:, picks] ch_names = [ch_names[p] for p in picks] return adjacency, ch_names def _ch_neighbor_adjacency(ch_names, neighbors): """Compute sensor adjacency matrix. Parameters ---------- ch_names : list of str The channel names. neighbors : list of list A list of list of channel names. The neighbors to which the channels in ch_names are connected with. Must be of the same length as ch_names. Returns ------- ch_adjacency : scipy.sparse.spmatrix The adjacency matrix. """ if len(ch_names) != len(neighbors): raise ValueError("`ch_names` and `neighbors` must have the same length") set_neighbors = {c for d in neighbors for c in d} rest = set_neighbors - set(ch_names) if len(rest) > 0: raise ValueError( "Some of your neighbors are not present in the list of channel names" ) for neigh in neighbors: if not isinstance(neigh, list) and not all(isinstance(c, str) for c in neigh): raise ValueError("`neighbors` must be a list of lists of str") ch_adjacency = np.eye(len(ch_names), dtype=bool) for ii, neigbs in enumerate(neighbors): ch_adjacency[ii, [ch_names.index(i) for i in neigbs]] = True ch_adjacency = csr_array(ch_adjacency) return ch_adjacency @fill_doc def find_ch_adjacency(info, ch_type): """Find the adjacency matrix for the given channels. This function tries to infer the appropriate adjacency matrix template for the given channels. If a template is not found, the adjacency matrix is computed using Delaunay triangulation based on 2D sensor locations. Parameters ---------- %(info_not_none)s ch_type : str | None The channel type for computing the adjacency matrix. Currently supports ``'mag'``, ``'grad'``, ``'eeg'`` and ``None``. If ``None``, the info must contain only one channel type. Returns ------- ch_adjacency : scipy.sparse.csr_array, shape (n_channels, n_channels) The adjacency matrix. ch_names : list The list of channel names present in adjacency matrix. See Also -------- mne.viz.plot_ch_adjacency mne.stats.combine_adjacency get_builtin_ch_adjacencies read_ch_adjacency Notes ----- .. versionadded:: 0.15 Automatic detection of an appropriate adjacency matrix template only works for MEG data at the moment. This means that the adjacency matrix is always computed for EEG data and never loaded from a template file. If you want to load a template for a given montage use :func:`read_ch_adjacency` directly. .. warning:: If Delaunay triangulation is used to calculate the adjacency matrix it may yield partially unexpected results (e.g., include unwanted edges between non-adjacent sensors). Therefore, it is recommended to check (and, if necessary, manually modify) the result by inspecting it via :func:`mne.viz.plot_ch_adjacency`. Note that depending on your use case, you may need to additionally use :func:`mne.stats.combine_adjacency` to prepare a final "adjacency" to pass to the eventual function. """ from ..io.kit.constants import KIT_NEIGHBORS if ch_type is None: picks = channel_indices_by_type(info) if sum([len(p) != 0 for p in picks.values()]) != 1: raise ValueError( "info must contain only one channel type if ch_type is None." ) ch_type = channel_type(info, 0) else: _check_option("ch_type", ch_type, ["mag", "grad", "eeg"]) ( has_vv_mag, has_vv_grad, is_old_vv, has_4D_mag, ctf_other_types, has_CTF_grad, n_kit_grads, has_any_meg, has_eeg_coils, has_eeg_coils_and_meg, has_eeg_coils_only, has_neuromag_122_grad, has_csd_coils, ) = _get_ch_info(info) conn_name = None if has_vv_mag and ch_type == "mag": conn_name = "neuromag306mag" elif has_vv_grad and ch_type == "grad": conn_name = "neuromag306planar" elif has_4D_mag: if "MEG 248" in info["ch_names"]: idx = info["ch_names"].index("MEG 248") grad = info["chs"][idx]["coil_type"] == FIFF.FIFFV_COIL_MAGNES_GRAD mag = info["chs"][idx]["coil_type"] == FIFF.FIFFV_COIL_MAGNES_MAG if ch_type == "grad" and grad: conn_name = "bti248grad" elif ch_type == "mag" and mag: conn_name = "bti248" elif "MEG 148" in info["ch_names"] and ch_type == "mag": idx = info["ch_names"].index("MEG 148") if info["chs"][idx]["coil_type"] == FIFF.FIFFV_COIL_MAGNES_MAG: conn_name = "bti148" elif has_CTF_grad and ch_type == "mag": if info["nchan"] < 100: conn_name = "ctf64" elif info["nchan"] > 200: conn_name = "ctf275" else: conn_name = "ctf151" elif n_kit_grads > 0: conn_name = KIT_NEIGHBORS.get(info["kit_system_id"]) if conn_name is not None: logger.info(f"Reading adjacency matrix for {conn_name}.") adjacency, ch_names = read_ch_adjacency(conn_name) if conn_name.startswith("neuromag") and info["ch_names"][0].startswith("MEG "): ch_names = [ch_name.replace("MEG", "MEG ") for ch_name in ch_names] return adjacency, ch_names logger.info( "Could not find a adjacency matrix for the data. " "Computing adjacency based on Delaunay triangulations." ) return _compute_ch_adjacency(info, ch_type) @fill_doc def _compute_ch_adjacency(info, ch_type): """Compute channel adjacency matrix using Delaunay triangulations. Parameters ---------- %(info_not_none)s ch_type : str The channel type for computing the adjacency matrix. Currently supports ``'mag'``, ``'grad'`` and ``'eeg'``. Returns ------- ch_adjacency : scipy.sparse.csr_array, shape (n_channels, n_channels) The adjacency matrix. ch_names : list The list of channel names present in adjacency matrix. """ from ..channels.layout import _find_topomap_coords, _pair_grad_sensors from ..source_estimate import spatial_tris_adjacency combine_grads = ch_type == "grad" and any( [ coil_type in [ch["coil_type"] for ch in info["chs"]] for coil_type in [FIFF.FIFFV_COIL_VV_PLANAR_T1, FIFF.FIFFV_COIL_NM_122] ] ) picks = dict(_picks_by_type(info, exclude=[]))[ch_type] ch_names = [info["ch_names"][pick] for pick in picks] if combine_grads: pairs = _pair_grad_sensors(info, topomap_coords=False, exclude=[]) if len(pairs) != len(picks): raise RuntimeError( "Cannot find a pair for some of the " "gradiometers. Cannot compute adjacency " "matrix." ) # only for one of the pair xy = _find_topomap_coords(info, picks[::2], sphere=HEAD_SIZE_DEFAULT) else: xy = _find_topomap_coords(info, picks, sphere=HEAD_SIZE_DEFAULT) tri = Delaunay(xy) neighbors = spatial_tris_adjacency(tri.simplices) if combine_grads: ch_adjacency = np.eye(len(picks), dtype=bool) for idx, neigbs in zip(neighbors.row, neighbors.col): for ii in range(2): # make sure each pair is included for jj in range(2): ch_adjacency[idx * 2 + ii, neigbs * 2 + jj] = True ch_adjacency[idx * 2 + ii, idx * 2 + jj] = True # pair ch_adjacency = csr_array(ch_adjacency) else: ch_adjacency = lil_array(neighbors) ch_adjacency.setdiag(np.repeat(1, ch_adjacency.shape[0])) ch_adjacency = ch_adjacency.tocsr() return ch_adjacency, ch_names @fill_doc def fix_mag_coil_types(info, use_cal=False): """Fix magnetometer coil types. Parameters ---------- %(info_not_none)s Corrections are done in-place. use_cal : bool If True, further refine the check for old coil types by checking ``info['chs'][ii]['cal']``. Notes ----- This function changes magnetometer coil types 3022 (T1: SQ20483N) and 3023 (T2: SQ20483-A) to 3024 (T3: SQ20950N) in the channel definition records in the info structure. Neuromag Vectorview systems can contain magnetometers with two different coil sizes (3022 and 3023 vs. 3024). The systems incorporating coils of type 3024 were introduced last and are used at the majority of MEG sites. At some sites with 3024 magnetometers, the data files have still defined the magnetometers to be of type 3022 to ensure compatibility with older versions of Neuromag software. In the MNE software as well as in the present version of Neuromag software coil type 3024 is fully supported. Therefore, it is now safe to upgrade the data files to use the true coil type. .. note:: The effect of the difference between the coil sizes on the current estimates computed by the MNE software is very small. Therefore the use of ``fix_mag_coil_types`` is not mandatory. """ old_mag_inds = _get_T1T2_mag_inds(info, use_cal) for ii in old_mag_inds: info["chs"][ii]["coil_type"] = FIFF.FIFFV_COIL_VV_MAG_T3 logger.info( "%d of %d magnetometer types replaced with T3." % (len(old_mag_inds), len(pick_types(info, meg="mag", exclude=[]))) ) info._check_consistency() def _get_T1T2_mag_inds(info, use_cal=False): """Find T1/T2 magnetometer coil types.""" picks = pick_types(info, meg="mag", exclude=[]) old_mag_inds = [] # From email exchanges, systems with the larger T2 coil only use the cal # value of 2.09e-11. Newer T3 magnetometers use 4.13e-11 or 1.33e-10 # (Triux). So we can use a simple check for > 3e-11. for ii in picks: ch = info["chs"][ii] if ch["coil_type"] in (FIFF.FIFFV_COIL_VV_MAG_T1, FIFF.FIFFV_COIL_VV_MAG_T2): if use_cal: if ch["cal"] > 3e-11: old_mag_inds.append(ii) else: old_mag_inds.append(ii) return old_mag_inds def _get_ch_info(info): """Get channel info for inferring acquisition device.""" chs = info["chs"] # Only take first 16 bits, as higher bits store CTF comp order coil_types = {ch["coil_type"] & 0xFFFF for ch in chs} channel_types = {ch["kind"] for ch in chs} has_vv_mag = any( k in coil_types for k in [ FIFF.FIFFV_COIL_VV_MAG_T1, FIFF.FIFFV_COIL_VV_MAG_T2, FIFF.FIFFV_COIL_VV_MAG_T3, ] ) has_vv_grad = any( k in coil_types for k in [ FIFF.FIFFV_COIL_VV_PLANAR_T1, FIFF.FIFFV_COIL_VV_PLANAR_T2, FIFF.FIFFV_COIL_VV_PLANAR_T3, ] ) has_neuromag_122_grad = any(k in coil_types for k in [FIFF.FIFFV_COIL_NM_122]) is_old_vv = " " in chs[0]["ch_name"] has_4D_mag = FIFF.FIFFV_COIL_MAGNES_MAG in coil_types ctf_other_types = ( FIFF.FIFFV_COIL_CTF_REF_MAG, FIFF.FIFFV_COIL_CTF_REF_GRAD, FIFF.FIFFV_COIL_CTF_OFFDIAG_REF_GRAD, ) has_CTF_grad = FIFF.FIFFV_COIL_CTF_GRAD in coil_types or ( FIFF.FIFFV_MEG_CH in channel_types and any(k in ctf_other_types for k in coil_types) ) # hack due to MNE-C bug in IO of CTF # only take first 16 bits, as higher bits store CTF comp order n_kit_grads = sum( ch["coil_type"] & 0xFFFF == FIFF.FIFFV_COIL_KIT_GRAD for ch in chs ) has_any_meg = any([has_vv_mag, has_vv_grad, has_4D_mag, has_CTF_grad, n_kit_grads]) has_eeg_coils = ( FIFF.FIFFV_COIL_EEG in coil_types and FIFF.FIFFV_EEG_CH in channel_types ) has_eeg_coils_and_meg = has_eeg_coils and has_any_meg has_eeg_coils_only = has_eeg_coils and not has_any_meg has_csd_coils = ( FIFF.FIFFV_COIL_EEG_CSD in coil_types and FIFF.FIFFV_EEG_CH in channel_types ) return ( has_vv_mag, has_vv_grad, is_old_vv, has_4D_mag, ctf_other_types, has_CTF_grad, n_kit_grads, has_any_meg, has_eeg_coils, has_eeg_coils_and_meg, has_eeg_coils_only, has_neuromag_122_grad, has_csd_coils, ) @fill_doc def make_1020_channel_selections(info, midline="z", *, return_ch_names=False): """Map hemisphere names to corresponding EEG channel names or indices. This function uses a simple heuristic to separate channel names into three Region of Interest-based selections: ``Left``, ``Midline`` and ``Right``. The heuristic is that any of the channel names ending with odd numbers are filed under ``Left``; those ending with even numbers are filed under ``Right``; and those ending with the character(s) specified in ``midline`` are filed under ``Midline``. Other channels are ignored. This is appropriate for 10/20, 10/10, 10/05, …, sensor arrangements, but not for other naming conventions. Parameters ---------- %(info_not_none)s If channel locations are present, the channel lists will be sorted from posterior to anterior; otherwise, the order specified in ``info["ch_names"]`` will be kept. midline : str Names ending in any of these characters are stored under the ``Midline`` key. Defaults to ``'z'``. Capitalization is ignored. return_ch_names : bool Whether to return channel names instead of channel indices. .. versionadded:: 1.4.0 Returns ------- selections : dict A dictionary mapping from region of interest name to a list of channel indices (if ``return_ch_names=False``) or to a list of channel names (if ``return_ch_names=True``). """ _validate_type(info, "info") try: from .layout import find_layout layout = find_layout(info) pos = layout.pos ch_names = layout.names except RuntimeError: # no channel positions found ch_names = info["ch_names"] pos = None selections = dict(Left=[], Midline=[], Right=[]) for pick, channel in enumerate(ch_names): last_char = channel[-1].lower() # in 10/20, last char codes hemisphere if last_char in midline: selection = "Midline" elif last_char.isdigit(): selection = "Left" if int(last_char) % 2 else "Right" else: # ignore the channel continue selections[selection].append(pick) if pos is not None: # sort channels from front to center # (y-coordinate of the position info in the layout) selections = { selection: np.array(picks)[pos[picks, 1].argsort()] for selection, picks in selections.items() } # convert channel indices to names if requested if return_ch_names: for selection, ch_indices in selections.items(): selections[selection] = [info.ch_names[idx] for idx in ch_indices] return selections @verbose def combine_channels( inst, groups, method="mean", keep_stim=False, drop_bad=False, verbose=None ): """Combine channels based on specified channel grouping. Parameters ---------- inst : instance of Raw, Epochs, or Evoked An MNE-Python object to combine the channels for. The object can be of type Raw, Epochs, or Evoked. groups : dict Specifies which channels are aggregated into a single channel, with aggregation method determined by the ``method`` parameter. One new pseudo-channel is made per dict entry; the dict values must be lists of picks (integer indices of ``ch_names``). For example:: groups=dict(Left=[1, 2, 3, 4], Right=[5, 6, 7, 8]) Note that within a dict entry all channels must have the same type. method : str | callable Which method to use to combine channels. If a :class:`str`, must be one of 'mean', 'median', or 'std' (standard deviation). If callable, the callable must accept one positional input (data of shape ``(n_channels, n_times)``, or ``(n_epochs, n_channels, n_times)``) and return an :class:`array ` of shape ``(n_times,)``, or ``(n_epochs, n_times)``. For example with an instance of Raw or Evoked:: method = lambda data: np.mean(data, axis=0) Another example with an instance of Epochs:: method = lambda data: np.median(data, axis=1) Defaults to ``'mean'``. keep_stim : bool If ``True``, include stimulus channels in the resulting object. Defaults to ``False``. drop_bad : bool If ``True``, drop channels marked as bad before combining. Defaults to ``False``. %(verbose)s Returns ------- combined_inst : instance of Raw, Epochs, or Evoked An MNE-Python object of the same type as the input ``inst``, containing one virtual channel for each group in ``groups`` (and, if ``keep_stim`` is ``True``, also containing stimulus channels). """ from ..epochs import BaseEpochs, EpochsArray from ..evoked import Evoked, EvokedArray from ..io import BaseRaw, RawArray ch_axis = 1 if isinstance(inst, BaseEpochs) else 0 ch_idx = list(range(inst.info["nchan"])) ch_names = inst.info["ch_names"] ch_types = inst.get_channel_types() kwargs = dict() if isinstance(inst, BaseEpochs): kwargs["copy"] = False inst_data = inst.get_data(**kwargs) groups = OrderedDict(deepcopy(groups)) # Convert string values of ``method`` into callables # XXX Possibly de-duplicate with _make_combine_callable of mne/viz/utils.py if isinstance(method, str): method_dict = { key: partial(getattr(np, key), axis=ch_axis) for key in ("mean", "median", "std") } try: method = method_dict[method] except KeyError: raise ValueError( '"method" must be a callable, or one of "mean", ' f'"median", or "std"; got "{method}".' ) # Instantiate channel info and data new_ch_names, new_ch_types, new_data = [], [], [] if not isinstance(keep_stim, bool): raise TypeError(f'"keep_stim" must be of type bool, not {type(keep_stim)}.') if keep_stim: stim_ch_idx = list(pick_types(inst.info, meg=False, stim=True)) if stim_ch_idx: new_ch_names = [ch_names[idx] for idx in stim_ch_idx] new_ch_types = [ch_types[idx] for idx in stim_ch_idx] new_data = [np.take(inst_data, idx, axis=ch_axis) for idx in stim_ch_idx] else: warn("Could not find stimulus channels.") # Get indices of bad channels ch_idx_bad = [] if not isinstance(drop_bad, bool): raise TypeError(f'"drop_bad" must be of type bool, not {type(drop_bad)}.') if drop_bad and inst.info["bads"]: ch_idx_bad = pick_channels(ch_names, inst.info["bads"]) # Check correctness of combinations for this_group, this_picks in groups.items(): # Check if channel indices are out of bounds if not all(idx in ch_idx for idx in this_picks): raise ValueError("Some channel indices are out of bounds.") # Check if heterogeneous sensor type combinations this_ch_type = np.array(ch_types)[this_picks] if len(set(this_ch_type)) > 1: types = ", ".join(set(this_ch_type)) raise ValueError( "Cannot combine sensors of different types; " f'"{this_group}" contains types {types}.' ) # Remove bad channels these_bads = [idx for idx in this_picks if idx in ch_idx_bad] this_picks = [idx for idx in this_picks if idx not in ch_idx_bad] if these_bads: logger.info( f"Dropped the following channels in group {this_group}: {these_bads}" ) # Check if combining less than 2 channel if len(set(this_picks)) < 2: warn( f'Less than 2 channels in group "{this_group}" when ' f'combining by method "{method}".' ) # If all good create more detailed dict without bad channels groups[this_group] = dict(picks=this_picks, ch_type=this_ch_type[0]) # Combine channels and add them to the new instance for this_group, this_group_dict in groups.items(): new_ch_names.append(this_group) new_ch_types.append(this_group_dict["ch_type"]) this_picks = this_group_dict["picks"] this_data = np.take(inst_data, this_picks, axis=ch_axis) new_data.append(method(this_data)) new_data = np.swapaxes(new_data, 0, ch_axis) info = create_info( sfreq=inst.info["sfreq"], ch_names=new_ch_names, ch_types=new_ch_types ) # create new instances and make sure to copy important attributes if isinstance(inst, BaseRaw): combined_inst = RawArray(new_data, info, first_samp=inst.first_samp) elif isinstance(inst, BaseEpochs): combined_inst = EpochsArray( new_data, info, events=inst.events, event_id=inst.event_id, tmin=inst.times[0], baseline=inst.baseline, ) if inst.metadata is not None: combined_inst.metadata = inst.metadata.copy() elif isinstance(inst, Evoked): combined_inst = EvokedArray( new_data, info, tmin=inst.times[0], baseline=inst.baseline ) return combined_inst # NeuroMag channel groupings _SELECTIONS = [ "Vertex", "Left-temporal", "Right-temporal", "Left-parietal", "Right-parietal", "Left-occipital", "Right-occipital", "Left-frontal", "Right-frontal", ] _EEG_SELECTIONS = ["EEG 1-32", "EEG 33-64", "EEG 65-96", "EEG 97-128"] def _divide_to_regions(info, add_stim=True): """Divide channels to regions by positions.""" picks = _pick_data_channels(info, exclude=[]) chs_in_lobe = len(picks) // 4 pos = np.array([ch["loc"][:3] for ch in info["chs"]]) x, y, z = pos.T frontal = picks[np.argsort(y[picks])[-chs_in_lobe:]] picks = np.setdiff1d(picks, frontal) occipital = picks[np.argsort(y[picks])[:chs_in_lobe]] picks = np.setdiff1d(picks, occipital) temporal = picks[np.argsort(z[picks])[:chs_in_lobe]] picks = np.setdiff1d(picks, temporal) lt, rt = _divide_side(temporal, x) lf, rf = _divide_side(frontal, x) lo, ro = _divide_side(occipital, x) lp, rp = _divide_side(picks, x) # Parietal lobe from the remaining picks. # Because of the way the sides are divided, there may be outliers in the # temporal lobes. Here we switch the sides for these outliers. For other # lobes it is not a big problem because of the vicinity of the lobes. with np.errstate(invalid="ignore"): # invalid division, greater compare zs = np.abs(zscore(x[rt])) outliers = np.array(rt)[np.where(zs > 2.0)[0]] rt = list(np.setdiff1d(rt, outliers)) with np.errstate(invalid="ignore"): # invalid division, greater compare zs = np.abs(zscore(x[lt])) outliers = np.append(outliers, (np.array(lt)[np.where(zs > 2.0)[0]])) lt = list(np.setdiff1d(lt, outliers)) l_mean = np.mean(x[lt]) r_mean = np.mean(x[rt]) for outlier in outliers: if abs(l_mean - x[outlier]) < abs(r_mean - x[outlier]): lt.append(outlier) else: rt.append(outlier) if add_stim: stim_ch = _get_stim_channel(None, info, raise_error=False) if len(stim_ch) > 0: for region in [lf, rf, lo, ro, lp, rp, lt, rt]: region.append(info["ch_names"].index(stim_ch[0])) return OrderedDict( [ ("Left-frontal", lf), ("Right-frontal", rf), ("Left-parietal", lp), ("Right-parietal", rp), ("Left-occipital", lo), ("Right-occipital", ro), ("Left-temporal", lt), ("Right-temporal", rt), ] ) def _divide_side(lobe, x): """Make a separation between left and right lobe evenly.""" lobe = np.asarray(lobe) median = np.median(x[lobe]) left = lobe[np.where(x[lobe] < median)[0]] right = lobe[np.where(x[lobe] > median)[0]] medians = np.where(x[lobe] == median)[0] left = np.sort(np.concatenate([left, lobe[medians[1::2]]])) right = np.sort(np.concatenate([right, lobe[medians[::2]]])) return list(left), list(right) @verbose def read_vectorview_selection(name, fname=None, info=None, verbose=None): """Read Neuromag Vector View channel selection from a file. Parameters ---------- name : str | list of str Name of the selection. If a list, the selections are combined. Supported selections are: ``'Vertex'``, ``'Left-temporal'``, ``'Right-temporal'``, ``'Left-parietal'``, ``'Right-parietal'``, ``'Left-occipital'``, ``'Right-occipital'``, ``'Left-frontal'`` and ``'Right-frontal'``. Selections can also be matched and combined by spcecifying common substrings. For example, ``name='temporal`` will produce a combination of ``'Left-temporal'`` and ``'Right-temporal'``. fname : path-like Filename of the selection file (if ``None``, built-in selections are used). %(info)s Used to determine which channel naming convention to use, e.g. ``'MEG 0111'`` (with space) for old Neuromag systems and ``'MEG0111'`` (without space) for new ones. %(verbose)s Returns ------- sel : list of str List with channel names in the selection. """ # convert name to list of string if not isinstance(name, (list, tuple)): name = [name] if isinstance(info, Info): picks = pick_types(info, meg=True, exclude=()) if len(picks) > 0 and " " not in info["ch_names"][picks[0]]: spacing = "new" else: spacing = "old" elif info is not None: raise TypeError(f"info must be an instance of Info or None, not {type(info)}") else: # info is None spacing = "old" # use built-in selections by default if fname is None: fname = op.join(op.dirname(__file__), "..", "data", "mne_analyze.sel") fname = str(_check_fname(fname, must_exist=True, overwrite="read")) # use this to make sure we find at least one match for each name name_found = {n: False for n in name} with open(fname) as fid: sel = [] for line in fid: line = line.strip() # skip blank lines and comments if len(line) == 0 or line[0] == "#": continue # get the name of the selection in the file pos = line.find(":") if pos < 0: logger.info('":" delimiter not found in selections file, skipping line') continue sel_name_file = line[:pos] # search for substring match with name provided for n in name: if sel_name_file.find(n) >= 0: sel.extend(line[pos + 1 :].split("|")) name_found[n] = True break # make sure we found at least one match for each name for n, found in name_found.items(): if not found: raise ValueError(f'No match for selection name "{n}" found') # make the selection a sorted list with unique elements sel = list(set(sel)) sel.sort() if spacing == "new": # "new" or "old" by now, "old" is default sel = [s.replace("MEG ", "MEG") for s in sel] return sel