# Authors: The MNE-Python contributors. # License: BSD-3-Clause # Copyright the MNE-Python contributors. import json import os.path as op import re import warnings from collections import Counter, OrderedDict from collections.abc import Iterable from copy import deepcopy from datetime import datetime, timedelta, timezone from itertools import takewhile from textwrap import shorten import numpy as np from scipy.io import loadmat from ._fiff.constants import FIFF from ._fiff.open import fiff_open from ._fiff.tag import read_tag from ._fiff.tree import dir_tree_find from ._fiff.write import ( _safe_name_list, end_block, start_and_end_file, start_block, write_double, write_float, write_name_list_sanitized, write_string, ) from .utils import ( _check_dict_keys, _check_dt, _check_fname, _check_option, _check_pandas_installed, _check_time_format, _convert_times, _DefaultEventParser, _dt_to_stamp, _is_numeric, _mask_to_onsets_offsets, _on_missing, _pl, _stamp_to_dt, _validate_type, check_fname, fill_doc, int_like, logger, verbose, warn, ) # For testing windows_like_datetime, we monkeypatch "datetime" in this module. # Keep the true datetime object around for _validate_type use. _datetime = datetime def _check_o_d_s_c(onset, duration, description, ch_names): onset = np.atleast_1d(np.array(onset, dtype=float)) if onset.ndim != 1: raise ValueError( f"Onset must be a one dimensional array, got {onset.ndim} (shape " f"{onset.shape})." ) duration = np.array(duration, dtype=float) if duration.ndim == 0 or duration.shape == (1,): duration = np.repeat(duration, len(onset)) if duration.ndim != 1: raise ValueError( f"Duration must be a one dimensional array, got {duration.ndim}." ) description = np.array(description, dtype=str) if description.ndim == 0 or description.shape == (1,): description = np.repeat(description, len(onset)) if description.ndim != 1: raise ValueError( f"Description must be a one dimensional array, got {description.ndim}." ) _safe_name_list(description, "write", "description") # ch_names: convert to ndarray of tuples _validate_type(ch_names, (None, tuple, list, np.ndarray), "ch_names") if ch_names is None: ch_names = [()] * len(onset) ch_names = list(ch_names) for ai, ch in enumerate(ch_names): _validate_type(ch, (list, tuple, np.ndarray), f"ch_names[{ai}]") ch_names[ai] = tuple(ch) for ci, name in enumerate(ch_names[ai]): _validate_type(name, str, f"ch_names[{ai}][{ci}]") ch_names = _ndarray_ch_names(ch_names) if not (len(onset) == len(duration) == len(description) == len(ch_names)): raise ValueError( "Onset, duration, description, and ch_names must be " f"equal in sizes, got {len(onset)}, {len(duration)}, " f"{len(description)}, and {len(ch_names)}." ) return onset, duration, description, ch_names def _ndarray_ch_names(ch_names): # np.array(..., dtype=object) if all entries are empty will give # an empty array of shape (n_entries, 0) which is not helpful. So let's # force it to give us an array of shape (n_entries,) full of empty # tuples out = np.empty(len(ch_names), dtype=object) out[:] = ch_names return out @fill_doc class Annotations: """Annotation object for annotating segments of raw data. .. note:: To convert events to `~mne.Annotations`, use `~mne.annotations_from_events`. To convert existing `~mne.Annotations` to events, use `~mne.events_from_annotations`. Parameters ---------- onset : array of float, shape (n_annotations,) The starting time of annotations in seconds after ``orig_time``. duration : array of float, shape (n_annotations,) | float Durations of the annotations in seconds. If a float, all the annotations are given the same duration. description : array of str, shape (n_annotations,) | str Array of strings containing description for each annotation. If a string, all the annotations are given the same description. To reject epochs, use description starting with keyword 'bad'. See example above. orig_time : float | str | datetime | tuple of int | None A POSIX Timestamp, datetime or a tuple containing the timestamp as the first element and microseconds as the second element. Determines the starting time of annotation acquisition. If None (default), starting time is determined from beginning of raw data acquisition. In general, ``raw.info['meas_date']`` (or None) can be used for syncing the annotations with raw data if their acquisition is started at the same time. If it is a string, it should conform to the ISO8601 format. More precisely to this '%%Y-%%m-%%d %%H:%%M:%%S.%%f' particular case of the ISO8601 format where the delimiter between date and time is ' '. %(ch_names_annot)s .. versionadded:: 0.23 See Also -------- mne.annotations_from_events mne.events_from_annotations Notes ----- Annotations are added to instance of :class:`mne.io.Raw` as the attribute :attr:`raw.annotations `. To reject bad epochs using annotations, use annotation description starting with 'bad' keyword. The epochs with overlapping bad segments are then rejected automatically by default. To remove epochs with blinks you can do: >>> eog_events = mne.preprocessing.find_eog_events(raw) # doctest: +SKIP >>> n_blinks = len(eog_events) # doctest: +SKIP >>> onset = eog_events[:, 0] / raw.info['sfreq'] - 0.25 # doctest: +SKIP >>> duration = np.repeat(0.5, n_blinks) # doctest: +SKIP >>> description = ['bad blink'] * n_blinks # doctest: +SKIP >>> annotations = mne.Annotations(onset, duration, description) # doctest: +SKIP >>> raw.set_annotations(annotations) # doctest: +SKIP >>> epochs = mne.Epochs(raw, events, event_id, tmin, tmax) # doctest: +SKIP **ch_names** Specifying channel names allows the creation of channel-specific annotations. Once the annotations are assigned to a raw instance with :meth:`mne.io.Raw.set_annotations`, if channels are renamed by the raw instance, the annotation channels also get renamed. If channels are dropped from the raw instance, any channel-specific annotation that has no channels left in the raw instance will also be removed. **orig_time** If ``orig_time`` is None, the annotations are synced to the start of the data (0 seconds). Otherwise the annotations are synced to sample 0 and ``raw.first_samp`` is taken into account the same way as with events. When setting annotations, the following alignments between ``raw.info['meas_date']`` and ``annotation.orig_time`` take place: :: ----------- meas_date=XX, orig_time=YY ----------------------------- | +------------------+ |______________| RAW | | | | | +------------------+ meas_date first_samp . . | +------+ . |_________| ANOT | . | | | . | +------+ . orig_time onset[0] . | +------+ |___________________| | | | | | +------+ orig_time onset[0]' ----------- meas_date=XX, orig_time=None --------------------------- | +------------------+ |______________| RAW | | | | | +------------------+ . N +------+ . o_________| ANOT | . n | | . e +------+ . | +------+ |________________________| | | | | | +------+ orig_time onset[0]' ----------- meas_date=None, orig_time=YY --------------------------- N +------------------+ o______________| RAW | n | | e +------------------+ | +------+ |_________| ANOT | | | | | +------+ [[[ CRASH ]]] ----------- meas_date=None, orig_time=None ------------------------- N +------------------+ o______________| RAW | n | | e +------------------+ . N +------+ . o_________| ANOT | . n | | . e +------+ . N +------+ o________________________| | n | | e +------+ orig_time onset[0]' .. warning:: This means that when ``raw.info['meas_date'] is None``, doing ``raw.set_annotations(raw.annotations)`` will not alter ``raw`` if and only if ``raw.first_samp == 0``. When it's non-zero, ``raw.set_annotations`` will assume that the "new" annotations refer to the original data (with ``first_samp==0``), and will be re-referenced to the new time offset! **Specific annotation** ``BAD_ACQ_SKIP`` annotation leads to specific reading/writing file behaviours. See :meth:`mne.io.read_raw_fif` and :meth:`Raw.save() ` notes for details. """ # noqa: E501 def __init__(self, onset, duration, description, orig_time=None, ch_names=None): self._orig_time = _handle_meas_date(orig_time) self.onset, self.duration, self.description, self.ch_names = _check_o_d_s_c( onset, duration, description, ch_names ) self._sort() # ensure we're sorted @property def orig_time(self): """The time base of the Annotations.""" return self._orig_time def __eq__(self, other): """Compare to another Annotations instance.""" if not isinstance(other, Annotations): return False return ( np.array_equal(self.onset, other.onset) and np.array_equal(self.duration, other.duration) and np.array_equal(self.description, other.description) and np.array_equal(self.ch_names, other.ch_names) and self.orig_time == other.orig_time ) def __repr__(self): """Show the representation.""" counter = Counter(self.description) kinds = ", ".join(["{} ({})".format(*k) for k in sorted(counter.items())]) kinds = (": " if len(kinds) > 0 else "") + kinds ch_specific = ", channel-specific" if self._any_ch_names() else "" s = ( f"Annotations | {len(self.onset)} segment" f"{_pl(len(self.onset))}{ch_specific}{kinds}" ) return "<" + shorten(s, width=77, placeholder=" ...") + ">" def __len__(self): """Return the number of annotations. Returns ------- n_annot : int The number of annotations. """ return len(self.duration) def __add__(self, other): """Add (concatencate) two Annotation objects.""" out = self.copy() out += other return out def __iadd__(self, other): """Add (concatencate) two Annotation objects in-place. Both annotations must have the same orig_time """ if len(self) == 0: self._orig_time = other.orig_time if self.orig_time != other.orig_time: raise ValueError( "orig_time should be the same to add/concatenate 2 annotations (got " f"{self.orig_time} != {other.orig_time})" ) return self.append( other.onset, other.duration, other.description, other.ch_names ) def __iter__(self): """Iterate over the annotations.""" # Figure this out once ahead of time for consistency and speed (for # thousands of annotations) with_ch_names = self._any_ch_names() for idx in range(len(self.onset)): yield self.__getitem__(idx, with_ch_names=with_ch_names) def __getitem__(self, key, *, with_ch_names=None): """Propagate indexing and slicing to the underlying numpy structure.""" if isinstance(key, int_like): out_keys = ("onset", "duration", "description", "orig_time") out_vals = ( self.onset[key], self.duration[key], self.description[key], self.orig_time, ) if with_ch_names or (with_ch_names is None and self._any_ch_names()): out_keys += ("ch_names",) out_vals += (self.ch_names[key],) return OrderedDict(zip(out_keys, out_vals)) else: key = list(key) if isinstance(key, tuple) else key return Annotations( onset=self.onset[key], duration=self.duration[key], description=self.description[key], orig_time=self.orig_time, ch_names=self.ch_names[key], ) @fill_doc def append(self, onset, duration, description, ch_names=None): """Add an annotated segment. Operates inplace. Parameters ---------- onset : float | array-like Annotation time onset from the beginning of the recording in seconds. duration : float | array-like Duration of the annotation in seconds. description : str | array-like Description for the annotation. To reject epochs, use description starting with keyword 'bad'. %(ch_names_annot)s .. versionadded:: 0.23 Returns ------- self : mne.Annotations The modified Annotations object. Notes ----- The array-like support for arguments allows this to be used similarly to not only ``list.append``, but also `list.extend `__. """ # noqa: E501 onset, duration, description, ch_names = _check_o_d_s_c( onset, duration, description, ch_names ) self.onset = np.append(self.onset, onset) self.duration = np.append(self.duration, duration) self.description = np.append(self.description, description) self.ch_names = np.append(self.ch_names, ch_names) self._sort() return self def copy(self): """Return a copy of the Annotations. Returns ------- inst : instance of Annotations A copy of the object. """ return deepcopy(self) def delete(self, idx): """Remove an annotation. Operates inplace. Parameters ---------- idx : int | array-like of int Index of the annotation to remove. Can be array-like to remove multiple indices. """ self.onset = np.delete(self.onset, idx) self.duration = np.delete(self.duration, idx) self.description = np.delete(self.description, idx) self.ch_names = np.delete(self.ch_names, idx) @fill_doc def to_data_frame(self, time_format="datetime"): """Export annotations in tabular structure as a pandas DataFrame. Parameters ---------- %(time_format_df_raw)s .. versionadded:: 1.7 Returns ------- result : pandas.DataFrame Returns a pandas DataFrame with onset, duration, and description columns. A column named ch_names is added if any annotations are channel-specific. """ pd = _check_pandas_installed(strict=True) valid_time_formats = ["ms", "timedelta", "datetime"] dt = _handle_meas_date(self.orig_time) if dt is None: dt = _handle_meas_date(0) time_format = _check_time_format(time_format, valid_time_formats, dt) dt = dt.replace(tzinfo=None) times = _convert_times(self.onset, time_format, dt) df = dict(onset=times, duration=self.duration, description=self.description) if self._any_ch_names(): df.update(ch_names=self.ch_names) df = pd.DataFrame(df) return df def count(self): """Count annotations. Returns ------- counts : dict A dictionary containing unique annotation descriptions as keys with their counts as values. """ return count_annotations(self) def _any_ch_names(self): return any(len(ch) for ch in self.ch_names) def _prune_ch_names(self, info, on_missing): # this prunes channel names and if a given channel-specific annotation # no longer has any channels left, it gets dropped keep = set(info["ch_names"]) ch_names = self.ch_names warned = False drop_idx = list() for ci, ch in enumerate(ch_names): if len(ch): names = list() for name in ch: if name not in keep: if not warned: _on_missing( on_missing, "At least one channel name in " f"annotations missing from info: {name}", ) warned = True else: names.append(name) ch_names[ci] = tuple(names) if not len(ch_names[ci]): drop_idx.append(ci) if len(drop_idx): self.delete(drop_idx) return self @verbose def save(self, fname, *, overwrite=False, verbose=None): """Save annotations to FIF, CSV or TXT. Typically annotations get saved in the FIF file for raw data (e.g., as ``raw.annotations``), but this offers the possibility to also save them to disk separately in different file formats which are easier to share between packages. Parameters ---------- fname : path-like The filename to use. %(overwrite)s .. versionadded:: 0.23 %(verbose)s Notes ----- The format of the information stored in the saved annotation objects depends on the chosen file format. :file:`.csv` files store the onset as timestamps (e.g., ``2002-12-03 19:01:56.676071``), whereas :file:`.txt` files store onset as seconds since start of the recording (e.g., ``45.95597082905339``). """ check_fname( fname, "annotations", ( "-annot.fif", "-annot.fif.gz", "_annot.fif", "_annot.fif.gz", ".txt", ".csv", ), ) fname = _check_fname(fname, overwrite=overwrite) if fname.suffix == ".txt": _write_annotations_txt(fname, self) elif fname.suffix == ".csv": _write_annotations_csv(fname, self) else: with start_and_end_file(fname) as fid: _write_annotations(fid, self) def _sort(self): """Sort in place.""" # instead of argsort here we use sorted so that it gives us # the onset-then-duration hierarchy vals = sorted(zip(self.onset, self.duration, range(len(self)))) order = list(list(zip(*vals))[-1]) if len(vals) else [] self.onset = self.onset[order] self.duration = self.duration[order] self.description = self.description[order] self.ch_names = self.ch_names[order] @verbose def crop( self, tmin=None, tmax=None, emit_warning=False, use_orig_time=True, verbose=None ): """Remove all annotation that are outside of [tmin, tmax]. The method operates inplace. Parameters ---------- tmin : float | datetime | None Start time of selection in seconds. tmax : float | datetime | None End time of selection in seconds. emit_warning : bool Whether to emit warnings when limiting or omitting annotations. Defaults to False. use_orig_time : bool Whether to use orig_time as an offset. Defaults to True. %(verbose)s Returns ------- self : instance of Annotations The cropped Annotations object. """ if len(self) == 0: return self # no annotations, nothing to do if not use_orig_time or self.orig_time is None: offset = _handle_meas_date(0) else: offset = self.orig_time if tmin is None: tmin = timedelta(seconds=self.onset.min()) + offset if tmax is None: tmax = timedelta(seconds=(self.onset + self.duration).max()) + offset for key, val in [("tmin", tmin), ("tmax", tmax)]: _validate_type( val, ("numeric", _datetime), key, "numeric, datetime, or None" ) absolute_tmin = _handle_meas_date(tmin) absolute_tmax = _handle_meas_date(tmax) del tmin, tmax if absolute_tmin > absolute_tmax: raise ValueError( f"tmax should be greater than or equal to tmin ({absolute_tmin} < " f"{absolute_tmax})." ) logger.debug(f"Cropping annotations {absolute_tmin} - {absolute_tmax}") onsets, durations, descriptions, ch_names = [], [], [], [] out_of_bounds, clip_left_elem, clip_right_elem = [], [], [] for idx, (onset, duration, description, ch) in enumerate( zip(self.onset, self.duration, self.description, self.ch_names) ): # if duration is NaN behave like a zero if np.isnan(duration): duration = 0.0 # convert to absolute times absolute_onset = timedelta(seconds=onset) + offset absolute_offset = absolute_onset + timedelta(seconds=duration) out_of_bounds.append( absolute_onset > absolute_tmax or absolute_offset < absolute_tmin ) if out_of_bounds[-1]: clip_left_elem.append(False) clip_right_elem.append(False) logger.debug( f" [{idx}] Dropping " f"({absolute_onset} - {absolute_offset}: {description})" ) else: # clip the left side clip_left_elem.append(absolute_onset < absolute_tmin) if clip_left_elem[-1]: absolute_onset = absolute_tmin clip_right_elem.append(absolute_offset > absolute_tmax) if clip_right_elem[-1]: absolute_offset = absolute_tmax if clip_left_elem[-1] or clip_right_elem[-1]: durations.append((absolute_offset - absolute_onset).total_seconds()) else: durations.append(duration) onsets.append((absolute_onset - offset).total_seconds()) logger.debug( f" [{idx}] Keeping " f"({absolute_onset} - {absolute_offset} -> " f"{onset} - {onset + duration})" ) descriptions.append(description) ch_names.append(ch) logger.debug(f"Cropping complete (kept {len(onsets)})") self.onset = np.array(onsets, float) self.duration = np.array(durations, float) assert (self.duration >= 0).all() self.description = np.array(descriptions, dtype=str) self.ch_names = _ndarray_ch_names(ch_names) if emit_warning: omitted = np.array(out_of_bounds).sum() if omitted > 0: warn(f"Omitted {omitted} annotation(s) that were outside data range.") limited = (np.array(clip_left_elem) | np.array(clip_right_elem)).sum() if limited > 0: warn( f"Limited {limited} annotation(s) that were expanding outside the" " data range." ) return self @verbose def set_durations(self, mapping, verbose=None): """Set annotation duration(s). Operates inplace. Parameters ---------- mapping : dict | float A dictionary mapping the annotation description to a duration in seconds e.g. ``{'ShortStimulus' : 3, 'LongStimulus' : 12}``. Alternatively, if a number is provided, then all annotations durations are set to the single provided value. %(verbose)s Returns ------- self : mne.Annotations The modified Annotations object. Notes ----- .. versionadded:: 0.24.0 """ _validate_type(mapping, (int, float, dict)) if isinstance(mapping, dict): _check_dict_keys( mapping, self.description, valid_key_source="data", key_description="Annotation description(s)", ) for stim in mapping: map_idx = [desc == stim for desc in self.description] self.duration[map_idx] = mapping[stim] elif _is_numeric(mapping): self.duration = np.ones(self.description.shape) * mapping else: raise ValueError( "Setting durations requires the mapping of " "descriptions to times to be provided as a dict. " f"Instead {type(mapping)} was provided." ) return self @verbose def rename(self, mapping, verbose=None): """Rename annotation description(s). Operates inplace. Parameters ---------- mapping : dict A dictionary mapping the old description to a new description, e.g. {'1.0' : 'Control', '2.0' : 'Stimulus'}. %(verbose)s Returns ------- self : mne.Annotations The modified Annotations object. Notes ----- .. versionadded:: 0.24.0 """ _validate_type(mapping, dict) _check_dict_keys( mapping, self.description, valid_key_source="data", key_description="Annotation description(s)", ) self.description = np.array([str(mapping.get(d, d)) for d in self.description]) return self class EpochAnnotationsMixin: """Mixin class for Annotations in Epochs.""" @property def annotations(self): # noqa: D102 return self._annotations @verbose def set_annotations(self, annotations, on_missing="raise", *, verbose=None): """Setter for Epoch annotations from Raw. This method does not handle offsetting the times based on first_samp or measurement dates, since that is expected to occur in Raw.set_annotations(). Parameters ---------- annotations : instance of mne.Annotations | None Annotations to set. %(on_missing_ch_names)s %(verbose)s Returns ------- self : instance of Epochs The epochs object with annotations. Notes ----- Annotation onsets and offsets are stored as time in seconds (not as sample numbers). If you have an ``-epo.fif`` file saved to disk created before 1.0, annotations can be added correctly only if no decimation or resampling was performed. We thus suggest to regenerate your :class:`mne.Epochs` from raw and re-save to disk with 1.0+ if you want to safely work with :class:`~mne.Annotations` in epochs. Since this method does not handle offsetting the times based on first_samp or measurement dates, the recommended way to add Annotations is:: raw.set_annotations(annotations) annotations = raw.annotations epochs.set_annotations(annotations) .. versionadded:: 1.0 """ _validate_type(annotations, (Annotations, None), "annotations") if annotations is None: self._annotations = None else: if getattr(self, "_unsafe_annot_add", False): warn( "Adding annotations to Epochs created (and saved to disk) before " "1.0 will yield incorrect results if decimation or resampling was " "performed on the instance, we recommend regenerating the Epochs " "and re-saving them to disk." ) new_annotations = annotations.copy() new_annotations._prune_ch_names(self.info, on_missing) self._annotations = new_annotations return self def get_annotations_per_epoch(self): """Get a list of annotations that occur during each epoch. Returns ------- epoch_annots : list A list of lists (with length equal to number of epochs) where each inner list contains any annotations that overlap the corresponding epoch. Annotations are stored as a :class:`tuple` of onset, duration, description (not as a :class:`~mne.Annotations` object), where the onset is now relative to time=0 of the epoch, rather than time=0 of the original continuous (raw) data. """ # create a list of annotations for each epoch epoch_annot_list = [[] for _ in range(len(self.events))] # check if annotations exist if self.annotations is None: return epoch_annot_list # when each epoch and annotation starts/stops # no need to account for first_samp here... epoch_tzeros = self.events[:, 0] / self._raw_sfreq epoch_starts, epoch_stops = ( np.atleast_2d(epoch_tzeros) + np.atleast_2d(self.times[[0, -1]]).T ) # ... because first_samp isn't accounted for here either annot_starts = self._annotations.onset annot_stops = annot_starts + self._annotations.duration # the first two cases (annot_straddles_epoch_{start|end}) will both # (redundantly) capture cases where an annotation fully encompasses # an epoch (e.g., annot from 1-4s, epoch from 2-3s). The redundancy # doesn't matter because results are summed and then cast to bool (all # we care about is presence/absence of overlap). annot_straddles_epoch_start = np.logical_and( np.atleast_2d(epoch_starts) >= np.atleast_2d(annot_starts).T, np.atleast_2d(epoch_starts) < np.atleast_2d(annot_stops).T, ) annot_straddles_epoch_end = np.logical_and( np.atleast_2d(epoch_stops) > np.atleast_2d(annot_starts).T, np.atleast_2d(epoch_stops) <= np.atleast_2d(annot_stops).T, ) # this captures the only remaining case we care about: annotations # fully contained within an epoch (or exactly coextensive with it). annot_fully_within_epoch = np.logical_and( np.atleast_2d(epoch_starts) <= np.atleast_2d(annot_starts).T, np.atleast_2d(epoch_stops) >= np.atleast_2d(annot_stops).T, ) # combine all cases to get array of shape (n_annotations, n_epochs). # Nonzero entries indicate overlap between the corresponding # annotation (row index) and epoch (column index). all_cases = ( annot_straddles_epoch_start + annot_straddles_epoch_end + annot_fully_within_epoch ) # for each Epoch-Annotation overlap occurrence: for annot_ix, epo_ix in zip(*np.nonzero(all_cases)): this_annot = self._annotations[annot_ix] this_tzero = epoch_tzeros[epo_ix] # adjust annotation onset to be relative to epoch tzero... annot = ( this_annot["onset"] - this_tzero, this_annot["duration"], this_annot["description"], ) # ...then add it to the correct sublist of `epoch_annot_list` epoch_annot_list[epo_ix].append(annot) return epoch_annot_list def add_annotations_to_metadata(self, overwrite=False): """Add raw annotations into the Epochs metadata data frame. Adds three columns to the ``metadata`` consisting of a list in each row: - ``annot_onset``: the onset of each Annotation within the Epoch relative to the start time of the Epoch (in seconds). - ``annot_duration``: the duration of each Annotation within the Epoch in seconds. - ``annot_description``: the free-form text description of each Annotation. Parameters ---------- overwrite : bool Whether to overwrite existing columns in metadata or not. Default is False. Returns ------- self : instance of Epochs The modified instance (instance is also modified inplace). Notes ----- .. versionadded:: 1.0 """ pd = _check_pandas_installed() # check if annotations exist if self.annotations is None: warn( f"There were no Annotations stored in {self}, so " "metadata was not modified." ) return self # get existing metadata DataFrame or instantiate an empty one if self._metadata is not None: metadata = self._metadata else: data = np.empty((len(self.events), 0)) metadata = pd.DataFrame(data=data) if ( any( name in metadata.columns for name in ["annot_onset", "annot_duration", "annot_description"] ) and not overwrite ): raise RuntimeError( "Metadata for Epochs already contains columns " '"annot_onset", "annot_duration", or "annot_description".' ) # get the Epoch annotations, then convert to separate lists for # onsets, durations, and descriptions epoch_annot_list = self.get_annotations_per_epoch() onset, duration, description = [], [], [] for epoch_annot in epoch_annot_list: for ix, annot_prop in enumerate((onset, duration, description)): entry = [annot[ix] for annot in epoch_annot] # round onset and duration to avoid IO round trip mismatch if ix < 2: entry = np.round(entry, decimals=12).tolist() annot_prop.append(entry) # Create a new Annotations column that is instantiated as an empty # list per Epoch. metadata["annot_onset"] = pd.Series(onset) metadata["annot_duration"] = pd.Series(duration) metadata["annot_description"] = pd.Series(description) # reset the metadata self.metadata = metadata return self def _combine_annotations( one, two, one_n_samples, one_first_samp, two_first_samp, sfreq ): """Combine a tuple of annotations.""" assert one is not None assert two is not None shift = one_n_samples / sfreq # to the right by the number of samples shift += one_first_samp / sfreq # to the right by the offset shift -= two_first_samp / sfreq # undo its offset onset = np.concatenate([one.onset, two.onset + shift]) duration = np.concatenate([one.duration, two.duration]) description = np.concatenate([one.description, two.description]) ch_names = np.concatenate([one.ch_names, two.ch_names]) return Annotations(onset, duration, description, one.orig_time, ch_names) def _handle_meas_date(meas_date): """Convert meas_date to datetime or None. If `meas_date` is a string, it should conform to the ISO8601 format. More precisely to this '%Y-%m-%d %H:%M:%S.%f' particular case of the ISO8601 format where the delimiter between date and time is ' '. Note that ISO8601 allows for ' ' or 'T' as delimiters between date and time. """ if isinstance(meas_date, str): ACCEPTED_ISO8601 = "%Y-%m-%d %H:%M:%S.%f" try: meas_date = datetime.strptime(meas_date, ACCEPTED_ISO8601) except ValueError: meas_date = None else: meas_date = meas_date.replace(tzinfo=timezone.utc) elif isinstance(meas_date, tuple): # old way meas_date = _stamp_to_dt(meas_date) if meas_date is not None: if np.isscalar(meas_date): # It would be nice just to do: # # meas_date = datetime.fromtimestamp(meas_date, timezone.utc) # # But Windows does not like timestamps < 0. So we'll use # our specialized wrapper instead: meas_date = np.array(np.modf(meas_date)[::-1]) meas_date *= [1, 1e6] meas_date = _stamp_to_dt(np.round(meas_date)) _check_dt(meas_date) # run checks return meas_date def _sync_onset(raw, onset, inverse=False): """Adjust onsets in relation to raw data.""" offset = (-1 if inverse else 1) * raw._first_time assert raw.info["meas_date"] == raw.annotations.orig_time annot_start = onset - offset return annot_start def _annotations_starts_stops(raw, kinds, name="skip_by_annotation", invert=False): """Get starts and stops from given kinds. onsets and ends are inclusive. """ _validate_type(kinds, (str, list, tuple), name) if isinstance(kinds, str): kinds = [kinds] else: for kind in kinds: _validate_type(kind, "str", "All entries") if len(raw.annotations) == 0: onsets, ends = np.array([], int), np.array([], int) else: idxs = [ idx for idx, desc in enumerate(raw.annotations.description) if any(desc.upper().startswith(kind.upper()) for kind in kinds) ] # onsets are already sorted onsets = raw.annotations.onset[idxs] onsets = _sync_onset(raw, onsets) ends = onsets + raw.annotations.duration[idxs] onsets = raw.time_as_index(onsets, use_rounding=True) ends = raw.time_as_index(ends, use_rounding=True) assert (onsets <= ends).all() # all durations >= 0 if invert: # We need to eliminate overlaps here, otherwise wacky things happen, # so we carefully invert the relationship mask = np.zeros(len(raw.times), bool) for onset, end in zip(onsets, ends): mask[onset:end] = True mask = ~mask extras = onsets == ends extra_onsets, extra_ends = onsets[extras], ends[extras] onsets, ends = _mask_to_onsets_offsets(mask) # Keep ones where things were exactly equal del extras # we could do this with a np.insert+np.searchsorted, but our # ordered-ness should get us it for free onsets = np.sort(np.concatenate([onsets, extra_onsets])) ends = np.sort(np.concatenate([ends, extra_ends])) assert (onsets <= ends).all() return onsets, ends def _write_annotations(fid, annotations): """Write annotations.""" start_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS) write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, annotations.onset) write_float( fid, FIFF.FIFF_MNE_BASELINE_MAX, annotations.duration + annotations.onset ) write_name_list_sanitized( fid, FIFF.FIFF_COMMENT, annotations.description, name="description" ) if annotations.orig_time is not None: write_double(fid, FIFF.FIFF_MEAS_DATE, _dt_to_stamp(annotations.orig_time)) if annotations._any_ch_names(): write_string( fid, FIFF.FIFF_MNE_EPOCHS_DROP_LOG, json.dumps(tuple(annotations.ch_names)) ) end_block(fid, FIFF.FIFFB_MNE_ANNOTATIONS) def _write_annotations_csv(fname, annot): annot = annot.to_data_frame() if "ch_names" in annot: annot["ch_names"] = [ _safe_name_list(ch, "write", name=f'annot["ch_names"][{ci}') for ci, ch in enumerate(annot["ch_names"]) ] annot.to_csv(fname, index=False) def _write_annotations_txt(fname, annot): content = "# MNE-Annotations\n" if annot.orig_time is not None: # for backward compat, we do not write tzinfo (assumed UTC) content += f"# orig_time : {annot.orig_time.replace(tzinfo=None)}\n" content += "# onset, duration, description" data = [annot.onset, annot.duration, annot.description] if annot._any_ch_names(): content += ", ch_names" data.append( [ _safe_name_list(ch, "write", f"annot.ch_names[{ci}]") for ci, ch in enumerate(annot.ch_names) ] ) content += "\n" data = np.array(data, dtype=str).T assert data.ndim == 2 assert data.shape[0] == len(annot.onset) assert data.shape[1] in (3, 4) with open(fname, "wb") as fid: fid.write(content.encode()) np.savetxt(fid, data, delimiter=",", fmt="%s") @fill_doc def read_annotations( fname, sfreq="auto", uint16_codec=None, encoding="utf8", ignore_marker_types=False ) -> Annotations: r"""Read annotations from a file. This function reads a ``.fif``, ``.fif.gz``, ``.vmrk``, ``.amrk``, ``.edf``, ``.txt``, ``.csv``, ``.cnt``, ``.cef``, or ``.set`` file and makes an :class:`mne.Annotations` object. Parameters ---------- fname : path-like The filename. sfreq : float | ``'auto'`` The sampling frequency in the file. This parameter is necessary for \*.vmrk, \*.amrk, and \*.cef files as Annotations are expressed in seconds and \*.vmrk/\*.amrk/\*.cef files are in samples. For any other file format, ``sfreq`` is omitted. If set to 'auto' then the ``sfreq`` is taken from the respective info file of the same name with according file extension (\*.vhdr/\*.ahdr for brainvision; \*.dap for Curry 7; \*.cdt.dpa for Curry 8). So data.vmrk/amrk looks for sfreq in data.vhdr/ahdr, data.cef looks in data.dap and data.cdt.cef looks in data.cdt.dpa. uint16_codec : str | None This parameter is only used in EEGLAB (\*.set) and omitted otherwise. If your \*.set file contains non-ascii characters, sometimes reading it may fail and give rise to error message stating that "buffer is too small". ``uint16_codec`` allows to specify what codec (for example: ``'latin1'`` or ``'utf-8'``) should be used when reading character arrays and can therefore help you solve this problem. %(encoding_edf)s Only used when reading EDF annotations. ignore_marker_types : bool If ``True``, ignore marker types in BrainVision files (and only use their descriptions). Defaults to ``False``. Returns ------- annot : instance of Annotations The annotations. Notes ----- The annotations stored in a ``.csv`` require the onset columns to be timestamps. If you have onsets as floats (in seconds), you should use the ``.txt`` extension. """ from .io.brainvision.brainvision import _read_annotations_brainvision from .io.cnt.cnt import _read_annotations_cnt from .io.ctf.markers import _read_annotations_ctf from .io.curry.curry import _read_annotations_curry from .io.edf.edf import _read_annotations_edf from .io.eeglab.eeglab import _read_annotations_eeglab fname = str( _check_fname( fname, overwrite="read", must_exist=True, need_dir=str(fname).endswith(".ds"), # for CTF name="fname", ) ) name = op.basename(fname) if name.endswith(("fif", "fif.gz")): # Read FiF files ff, tree, _ = fiff_open(fname, preload=False) with ff as fid: annotations = _read_annotations_fif(fid, tree) elif name.endswith("txt"): annotations = _read_annotations_txt(fname) elif name.endswith(("vmrk", "amrk")): annotations = _read_annotations_brainvision( fname, sfreq=sfreq, ignore_marker_types=ignore_marker_types ) elif name.endswith("csv"): annotations = _read_annotations_csv(fname) elif name.endswith("cnt"): annotations = _read_annotations_cnt(fname) elif name.endswith("ds"): annotations = _read_annotations_ctf(fname) elif name.endswith("cef"): annotations = _read_annotations_curry(fname, sfreq=sfreq) elif name.endswith("set"): annotations = _read_annotations_eeglab(fname, uint16_codec=uint16_codec) elif name.endswith(("edf", "bdf", "gdf")): annotations = _read_annotations_edf(fname, encoding=encoding) elif name.startswith("events_") and fname.endswith("mat"): annotations = _read_brainstorm_annotations(fname) else: raise OSError(f'Unknown annotation file format "{fname}"') if annotations is None: raise OSError(f'No annotation data found in file "{fname}"') return annotations def _read_annotations_csv(fname): """Read annotations from csv. Parameters ---------- fname : path-like The filename. Returns ------- annot : instance of Annotations The annotations. """ pd = _check_pandas_installed(strict=True) df = pd.read_csv(fname, keep_default_na=False) orig_time = df["onset"].values[0] try: float(orig_time) warn( "It looks like you have provided annotation onsets as floats. " "These will be interpreted as MILLISECONDS. If that is not what " "you want, save your CSV as a TXT file; the TXT reader accepts " "onsets in seconds." ) except ValueError: pass onset_dt = pd.to_datetime(df["onset"]) onset = (onset_dt - onset_dt[0]).dt.total_seconds() duration = df["duration"].values.astype(float) description = df["description"].values ch_names = None if "ch_names" in df.columns: ch_names = [ _safe_name_list(val, "read", "annotation channel name") for val in df["ch_names"].values ] return Annotations(onset, duration, description, orig_time, ch_names) def _read_brainstorm_annotations(fname, orig_time=None): """Read annotations from a Brainstorm events_ file. Parameters ---------- fname : path-like The filename orig_time : float | int | instance of datetime | array of int | None A POSIX Timestamp, datetime or an array containing the timestamp as the first element and microseconds as the second element. Determines the starting time of annotation acquisition. If None (default), starting time is determined from beginning of raw data acquisition. In general, ``raw.info['meas_date']`` (or None) can be used for syncing the annotations with raw data if their acquisition is started at the same time. Returns ------- annot : instance of Annotations | None The annotations. """ def get_duration_from_times(t): return t[1] - t[0] if t.shape[0] == 2 else np.zeros(len(t[0])) annot_data = loadmat(fname) onsets, durations, descriptions = (list(), list(), list()) for label, _, _, _, times, _, _ in annot_data["events"][0]: onsets.append(times[0]) durations.append(get_duration_from_times(times)) n_annot = len(times[0]) descriptions += [str(label[0])] * n_annot return Annotations( onset=np.concatenate(onsets), duration=np.concatenate(durations), description=descriptions, orig_time=orig_time, ) def _is_iso8601(candidate_str): ISO8601 = r"^\d{4}-\d{2}-\d{2}[ T]\d{2}:\d{2}:\d{2}\.\d{6}$" return re.compile(ISO8601).match(candidate_str) is not None def _read_annotations_txt_parse_header(fname): def is_orig_time(x): return x.startswith("# orig_time :") with open(fname) as fid: header = list(takewhile(lambda x: x.startswith("#"), fid)) orig_values = [h[13:].strip() for h in header if is_orig_time(h)] orig_values = [_handle_meas_date(orig) for orig in orig_values if _is_iso8601(orig)] return None if not orig_values else orig_values[0] def _read_annotations_txt(fname): with warnings.catch_warnings(record=True): warnings.simplefilter("ignore") out = np.loadtxt(fname, delimiter=",", dtype=np.bytes_, unpack=True) ch_names = None if len(out) == 0: onset, duration, desc = [], [], [] else: _check_option("text header", len(out), (3, 4)) if len(out) == 3: onset, duration, desc = out else: onset, duration, desc, ch_names = out onset = [float(o.decode()) for o in np.atleast_1d(onset)] duration = [float(d.decode()) for d in np.atleast_1d(duration)] desc = [str(d.decode()).strip() for d in np.atleast_1d(desc)] if ch_names is not None: ch_names = [ _safe_name_list(ch.decode().strip(), "read", f"ch_names[{ci}]") for ci, ch in enumerate(ch_names) ] orig_time = _read_annotations_txt_parse_header(fname) annotations = Annotations( onset=onset, duration=duration, description=desc, orig_time=orig_time, ch_names=ch_names, ) return annotations def _read_annotations_fif(fid, tree): """Read annotations.""" annot_data = dir_tree_find(tree, FIFF.FIFFB_MNE_ANNOTATIONS) if len(annot_data) == 0: annotations = None else: annot_data = annot_data[0] orig_time = ch_names = None onset, duration, description = list(), list(), list() for ent in annot_data["directory"]: kind = ent.kind pos = ent.pos tag = read_tag(fid, pos) if kind == FIFF.FIFF_MNE_BASELINE_MIN: onset = tag.data onset = list() if onset is None else onset elif kind == FIFF.FIFF_MNE_BASELINE_MAX: duration = tag.data duration = list() if duration is None else duration - onset elif kind == FIFF.FIFF_COMMENT: description = _safe_name_list(tag.data, "read", "description") elif kind == FIFF.FIFF_MEAS_DATE: orig_time = tag.data try: orig_time = float(orig_time) # old way except TypeError: orig_time = tuple(orig_time) # new way elif kind == FIFF.FIFF_MNE_EPOCHS_DROP_LOG: ch_names = tuple(tuple(x) for x in json.loads(tag.data)) assert len(onset) == len(duration) == len(description) annotations = Annotations(onset, duration, description, orig_time, ch_names) return annotations def _select_annotations_based_on_description(descriptions, event_id, regexp): """Get a collection of descriptions and returns index of selected.""" regexp_comp = re.compile(".*" if regexp is None else regexp) event_id_ = dict() dropped = [] # Iterate over the sorted descriptions so that the Counter mapping # is slightly less arbitrary for desc in sorted(descriptions): if desc in event_id_: continue if regexp_comp.match(desc) is None: continue if isinstance(event_id, dict): if desc in event_id: event_id_[desc] = event_id[desc] else: continue else: trigger = event_id(desc) if trigger is not None: event_id_[desc] = trigger else: dropped.append(desc) event_sel = [ii for ii, kk in enumerate(descriptions) if kk in event_id_] if len(event_sel) == 0 and regexp is not None: raise ValueError("Could not find any of the events you specified.") return event_sel, event_id_ def _select_events_based_on_id(events, event_desc): """Get a collection of events and returns index of selected.""" event_desc_ = dict() func = event_desc.get if isinstance(event_desc, dict) else event_desc event_ids = events[np.unique(events[:, 2], return_index=True)[1], 2] for e in event_ids: trigger = func(e) if trigger is not None: event_desc_[e] = trigger event_sel = [ii for ii, e in enumerate(events) if e[2] in event_desc_] if len(event_sel) == 0: raise ValueError("Could not find any of the events you specified.") return event_sel, event_desc_ def _check_event_id(event_id, raw): from .io import Raw, RawArray from .io.brainvision.brainvision import ( RawBrainVision, _BVEventParser, _check_bv_annot, ) if event_id is None: return _DefaultEventParser() elif event_id == "auto": if isinstance(raw, RawBrainVision): return _BVEventParser() elif isinstance(raw, (Raw, RawArray)) and _check_bv_annot( raw.annotations.description ): logger.info("Non-RawBrainVision raw using branvision markers") return _BVEventParser() else: return _DefaultEventParser() elif callable(event_id) or isinstance(event_id, dict): return event_id else: raise ValueError( "Invalid type for event_id (should be None, str, " f"dict or callable). Got {type(event_id)}." ) def _check_event_description(event_desc, events): """Check event_id and convert to default format.""" if event_desc is None: # convert to int to make typing-checks happy event_desc = list(np.unique(events[:, 2])) if isinstance(event_desc, dict): for val in event_desc.values(): _validate_type(val, (str, None), "Event names") elif isinstance(event_desc, Iterable): event_desc = np.asarray(event_desc) if event_desc.ndim != 1: raise ValueError(f"event_desc must be 1D, got shape {event_desc.shape}") event_desc = dict(zip(event_desc, map(str, event_desc))) elif callable(event_desc): pass else: raise ValueError( "Invalid type for event_desc (should be None, list, " f"1darray, dict or callable). Got {type(event_desc)}." ) return event_desc @verbose def events_from_annotations( raw, event_id="auto", regexp=r"^(?![Bb][Aa][Dd]|[Ee][Dd][Gg][Ee]).*$", use_rounding=True, chunk_duration=None, tol=1e-8, verbose=None, ): """Get :term:`events` and ``event_id`` from an Annotations object. Parameters ---------- raw : instance of Raw The raw data for which Annotations are defined. event_id : dict | callable | None | ``'auto'`` Can be: - **dict**: map descriptions (keys) to integer event codes (values). Only the descriptions present will be mapped, others will be ignored. - **callable**: must take a string input and return an integer event code, or return ``None`` to ignore the event. - **None**: Map descriptions to unique integer values based on their ``sorted`` order. - **'auto' (default)**: prefer a raw-format-specific parser: - Brainvision: map stimulus events to their integer part; response events to integer part + 1000; optic events to integer part + 2000; 'SyncStatus/Sync On' to 99998; 'New Segment/' to 99999; all others like ``None`` with an offset of 10000. - Other raw formats: Behaves like None. .. versionadded:: 0.18 regexp : str | None Regular expression used to filter the annotations whose descriptions is a match. The default ignores descriptions beginning ``'bad'`` or ``'edge'`` (case-insensitive). .. versionchanged:: 0.18 Default ignores bad and edge descriptions. use_rounding : bool If True, use rounding (instead of truncation) when converting times to indices. This can help avoid non-unique indices. chunk_duration : float | None Chunk duration in seconds. If ``chunk_duration`` is set to None (default), generated events correspond to the annotation onsets. If not, :func:`mne.events_from_annotations` returns as many events as they fit within the annotation duration spaced according to ``chunk_duration``. As a consequence annotations with duration shorter than ``chunk_duration`` will not contribute events. tol : float The tolerance used to check if a chunk fits within an annotation when ``chunk_duration`` is not ``None``. If the duration from a computed chunk onset to the end of the annotation is smaller than ``chunk_duration`` minus ``tol``, the onset will be discarded. %(verbose)s Returns ------- %(events)s event_id : dict The event_id variable that can be passed to :class:`~mne.Epochs`. See Also -------- mne.annotations_from_events Notes ----- For data formats that store integer events as strings (e.g., NeuroScan ``.cnt`` files), passing the Python built-in function :class:`int` as the ``event_id`` parameter will do what most users probably want in those circumstances: return an ``event_id`` dictionary that maps event ``'1'`` to integer event code ``1``, ``'2'`` to ``2``, etc. """ if len(raw.annotations) == 0: event_id = dict() if not isinstance(event_id, dict) else event_id return np.empty((0, 3), dtype=int), event_id annotations = raw.annotations event_id = _check_event_id(event_id, raw) event_sel, event_id_ = _select_annotations_based_on_description( annotations.description, event_id=event_id, regexp=regexp ) if chunk_duration is None: inds = raw.time_as_index( annotations.onset, use_rounding=use_rounding, origin=annotations.orig_time ) if annotations.orig_time is not None: inds += raw.first_samp values = [event_id_[kk] for kk in annotations.description[event_sel]] inds = inds[event_sel] else: inds = values = np.array([]).astype(int) for annot in annotations[event_sel]: annot_offset = annot["onset"] + annot["duration"] _onsets = np.arange(annot["onset"], annot_offset, chunk_duration) good_events = annot_offset - _onsets >= chunk_duration - tol if good_events.any(): _onsets = _onsets[good_events] _inds = raw.time_as_index( _onsets, use_rounding=use_rounding, origin=annotations.orig_time ) _inds += raw.first_samp inds = np.append(inds, _inds) _values = np.full( shape=len(_inds), fill_value=event_id_[annot["description"]], dtype=int, ) values = np.append(values, _values) events = np.c_[inds, np.zeros(len(inds)), values].astype(int) logger.info(f"Used Annotations descriptions: {list(event_id_.keys())}") return events, event_id_ @verbose def annotations_from_events( events, sfreq, event_desc=None, first_samp=0, orig_time=None, verbose=None ): """Convert an event array to an Annotations object. Parameters ---------- events : ndarray, shape (n_events, 3) The events. sfreq : float Sampling frequency. event_desc : dict | array-like | callable | None Events description. Can be: - **dict**: map integer event codes (keys) to descriptions (values). Only the descriptions present will be mapped, others will be ignored. - **array-like**: list, or 1d array of integers event codes to include. Only the event codes present will be mapped, others will be ignored. Event codes will be passed as string descriptions. - **callable**: must take a integer event code as input and return a string description or None to ignore it. - **None**: Use integer event codes as descriptions. first_samp : int The first data sample (default=0). See :attr:`mne.io.Raw.first_samp` docstring. orig_time : float | str | datetime | tuple of int | None Determines the starting time of annotation acquisition. If None (default), starting time is determined from beginning of raw data acquisition. For details, see :meth:`mne.Annotations` docstring. %(verbose)s Returns ------- annot : instance of Annotations The annotations. See Also -------- mne.events_from_annotations Notes ----- Annotations returned by this function will all have zero (null) duration. Creating events from annotations via the function `mne.events_from_annotations` takes in event mappings with key→value pairs as description→ID, whereas `mne.annotations_from_events` takes in event mappings with key→value pairs as ID→description. If you need to use these together, you can invert the mapping by doing:: event_desc = {v: k for k, v in event_id.items()} """ event_desc = _check_event_description(event_desc, events) event_sel, event_desc_ = _select_events_based_on_id(events, event_desc) events_sel = events[event_sel] onsets = (events_sel[:, 0] - first_samp) / sfreq descriptions = [event_desc_[e[2]] for e in events_sel] durations = np.zeros(len(events_sel)) # dummy durations # Create annotations annots = Annotations( onset=onsets, duration=durations, description=descriptions, orig_time=orig_time ) return annots def _adjust_onset_meas_date(annot, raw): """Adjust the annotation onsets based on raw meas_date.""" # If there is a non-None meas date, then the onset should take into # account the first_samp / first_time. if raw.info["meas_date"] is not None: annot.onset += raw.first_time def count_annotations(annotations): """Count annotations. Parameters ---------- annotations : mne.Annotations The annotations instance. Returns ------- counts : dict A dictionary containing unique annotation descriptions as keys with their counts as values. Examples -------- >>> annotations = mne.Annotations([0, 1, 2], [1, 2, 1], ["T0", "T1", "T0"]) >>> count_annotations(annotations) {'T0': 2, 'T1': 1} """ types, counts = np.unique(annotations.description, return_counts=True) return {str(t): int(count) for t, count in zip(types, counts)}