import pandas as pd from global_var import global_var_init cycle, fs_ecg, fs_ppg, record_name, record_name_csv = global_var_init() def find_large_values(excel_file, threshold=0.6): # 调整阈值 # 读取Excel文件中的所有sheet df = pd.read_excel(excel_file, sheet_name=None) # 存储结果的列表 results = [] # 遍历每一个sheet for sheet_name, data in df.items(): # 获取每一个单元格的行列位置和数据 for row_idx in range(data.shape[0]): for col_idx in range(data.shape[1]): value = data.iat[row_idx, col_idx] # 检查是否大于阈值 if isinstance(value, (int, float)) and value > threshold: cell_location = (sheet_name, row_idx + 2, col_idx + 1) # Excel行列从1开始计数 results.append(cell_location) return results def append_to_file(results, output_file): with open(output_file, 'a') as f: f.write("") for result in results: f.write(f'Sheet: {result[0]}, Row: {result[1]}, Column: {result[2]}\n') f.write("########################\n") def main(): excel_file = f"D://python_study//big_boss//doc//output//{record_name}_output.xlsx" # Excel文件路径 output_file = f"D://python_study//big_boss//doc//output//processed.txt" # 输出文件路径 results = find_large_values(excel_file) # 将结果追加到文件 append_to_file(results, output_file) if __name__ == "__main__": main()