针对pulse-transit的工具
This commit is contained in:
520
dist/client/pandas/util/_validators.py
vendored
Normal file
520
dist/client/pandas/util/_validators.py
vendored
Normal file
@@ -0,0 +1,520 @@
|
||||
"""
|
||||
Module that contains many useful utilities
|
||||
for validating data or function arguments
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import (
|
||||
Iterable,
|
||||
Sequence,
|
||||
)
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
|
||||
from pandas.util._exceptions import find_stack_level
|
||||
|
||||
from pandas.core.dtypes.common import (
|
||||
is_bool,
|
||||
is_integer,
|
||||
)
|
||||
|
||||
|
||||
def _check_arg_length(fname, args, max_fname_arg_count, compat_args):
|
||||
"""
|
||||
Checks whether 'args' has length of at most 'compat_args'. Raises
|
||||
a TypeError if that is not the case, similar to in Python when a
|
||||
function is called with too many arguments.
|
||||
"""
|
||||
if max_fname_arg_count < 0:
|
||||
raise ValueError("'max_fname_arg_count' must be non-negative")
|
||||
|
||||
if len(args) > len(compat_args):
|
||||
max_arg_count = len(compat_args) + max_fname_arg_count
|
||||
actual_arg_count = len(args) + max_fname_arg_count
|
||||
argument = "argument" if max_arg_count == 1 else "arguments"
|
||||
|
||||
raise TypeError(
|
||||
f"{fname}() takes at most {max_arg_count} {argument} "
|
||||
f"({actual_arg_count} given)"
|
||||
)
|
||||
|
||||
|
||||
def _check_for_default_values(fname, arg_val_dict, compat_args):
|
||||
"""
|
||||
Check that the keys in `arg_val_dict` are mapped to their
|
||||
default values as specified in `compat_args`.
|
||||
|
||||
Note that this function is to be called only when it has been
|
||||
checked that arg_val_dict.keys() is a subset of compat_args
|
||||
"""
|
||||
for key in arg_val_dict:
|
||||
# try checking equality directly with '=' operator,
|
||||
# as comparison may have been overridden for the left
|
||||
# hand object
|
||||
try:
|
||||
v1 = arg_val_dict[key]
|
||||
v2 = compat_args[key]
|
||||
|
||||
# check for None-ness otherwise we could end up
|
||||
# comparing a numpy array vs None
|
||||
if (v1 is not None and v2 is None) or (v1 is None and v2 is not None):
|
||||
match = False
|
||||
else:
|
||||
match = v1 == v2
|
||||
|
||||
if not is_bool(match):
|
||||
raise ValueError("'match' is not a boolean")
|
||||
|
||||
# could not compare them directly, so try comparison
|
||||
# using the 'is' operator
|
||||
except ValueError:
|
||||
match = arg_val_dict[key] is compat_args[key]
|
||||
|
||||
if not match:
|
||||
raise ValueError(
|
||||
f"the '{key}' parameter is not supported in "
|
||||
f"the pandas implementation of {fname}()"
|
||||
)
|
||||
|
||||
|
||||
def validate_args(fname, args, max_fname_arg_count, compat_args):
|
||||
"""
|
||||
Checks whether the length of the `*args` argument passed into a function
|
||||
has at most `len(compat_args)` arguments and whether or not all of these
|
||||
elements in `args` are set to their default values.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fname : str
|
||||
The name of the function being passed the `*args` parameter
|
||||
args : tuple
|
||||
The `*args` parameter passed into a function
|
||||
max_fname_arg_count : int
|
||||
The maximum number of arguments that the function `fname`
|
||||
can accept, excluding those in `args`. Used for displaying
|
||||
appropriate error messages. Must be non-negative.
|
||||
compat_args : dict
|
||||
A dictionary of keys and their associated default values.
|
||||
In order to accommodate buggy behaviour in some versions of `numpy`,
|
||||
where a signature displayed keyword arguments but then passed those
|
||||
arguments **positionally** internally when calling downstream
|
||||
implementations, a dict ensures that the original
|
||||
order of the keyword arguments is enforced.
|
||||
|
||||
Raises
|
||||
------
|
||||
TypeError
|
||||
If `args` contains more values than there are `compat_args`
|
||||
ValueError
|
||||
If `args` contains values that do not correspond to those
|
||||
of the default values specified in `compat_args`
|
||||
"""
|
||||
_check_arg_length(fname, args, max_fname_arg_count, compat_args)
|
||||
|
||||
# We do this so that we can provide a more informative
|
||||
# error message about the parameters that we are not
|
||||
# supporting in the pandas implementation of 'fname'
|
||||
kwargs = dict(zip(compat_args, args))
|
||||
_check_for_default_values(fname, kwargs, compat_args)
|
||||
|
||||
|
||||
def _check_for_invalid_keys(fname, kwargs, compat_args):
|
||||
"""
|
||||
Checks whether 'kwargs' contains any keys that are not
|
||||
in 'compat_args' and raises a TypeError if there is one.
|
||||
"""
|
||||
# set(dict) --> set of the dictionary's keys
|
||||
diff = set(kwargs) - set(compat_args)
|
||||
|
||||
if diff:
|
||||
bad_arg = list(diff)[0]
|
||||
raise TypeError(f"{fname}() got an unexpected keyword argument '{bad_arg}'")
|
||||
|
||||
|
||||
def validate_kwargs(fname, kwargs, compat_args):
|
||||
"""
|
||||
Checks whether parameters passed to the **kwargs argument in a
|
||||
function `fname` are valid parameters as specified in `*compat_args`
|
||||
and whether or not they are set to their default values.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fname : str
|
||||
The name of the function being passed the `**kwargs` parameter
|
||||
kwargs : dict
|
||||
The `**kwargs` parameter passed into `fname`
|
||||
compat_args: dict
|
||||
A dictionary of keys that `kwargs` is allowed to have and their
|
||||
associated default values
|
||||
|
||||
Raises
|
||||
------
|
||||
TypeError if `kwargs` contains keys not in `compat_args`
|
||||
ValueError if `kwargs` contains keys in `compat_args` that do not
|
||||
map to the default values specified in `compat_args`
|
||||
"""
|
||||
kwds = kwargs.copy()
|
||||
_check_for_invalid_keys(fname, kwargs, compat_args)
|
||||
_check_for_default_values(fname, kwds, compat_args)
|
||||
|
||||
|
||||
def validate_args_and_kwargs(fname, args, kwargs, max_fname_arg_count, compat_args):
|
||||
"""
|
||||
Checks whether parameters passed to the *args and **kwargs argument in a
|
||||
function `fname` are valid parameters as specified in `*compat_args`
|
||||
and whether or not they are set to their default values.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
fname: str
|
||||
The name of the function being passed the `**kwargs` parameter
|
||||
args: tuple
|
||||
The `*args` parameter passed into a function
|
||||
kwargs: dict
|
||||
The `**kwargs` parameter passed into `fname`
|
||||
max_fname_arg_count: int
|
||||
The minimum number of arguments that the function `fname`
|
||||
requires, excluding those in `args`. Used for displaying
|
||||
appropriate error messages. Must be non-negative.
|
||||
compat_args: dict
|
||||
A dictionary of keys that `kwargs` is allowed to
|
||||
have and their associated default values.
|
||||
|
||||
Raises
|
||||
------
|
||||
TypeError if `args` contains more values than there are
|
||||
`compat_args` OR `kwargs` contains keys not in `compat_args`
|
||||
ValueError if `args` contains values not at the default value (`None`)
|
||||
`kwargs` contains keys in `compat_args` that do not map to the default
|
||||
value as specified in `compat_args`
|
||||
|
||||
See Also
|
||||
--------
|
||||
validate_args : Purely args validation.
|
||||
validate_kwargs : Purely kwargs validation.
|
||||
|
||||
"""
|
||||
# Check that the total number of arguments passed in (i.e.
|
||||
# args and kwargs) does not exceed the length of compat_args
|
||||
_check_arg_length(
|
||||
fname, args + tuple(kwargs.values()), max_fname_arg_count, compat_args
|
||||
)
|
||||
|
||||
# Check there is no overlap with the positional and keyword
|
||||
# arguments, similar to what is done in actual Python functions
|
||||
args_dict = dict(zip(compat_args, args))
|
||||
|
||||
for key in args_dict:
|
||||
if key in kwargs:
|
||||
raise TypeError(
|
||||
f"{fname}() got multiple values for keyword argument '{key}'"
|
||||
)
|
||||
|
||||
kwargs.update(args_dict)
|
||||
validate_kwargs(fname, kwargs, compat_args)
|
||||
|
||||
|
||||
def validate_bool_kwarg(value, arg_name, none_allowed=True, int_allowed=False):
|
||||
"""
|
||||
Ensure that argument passed in arg_name can be interpreted as boolean.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
value : bool
|
||||
Value to be validated.
|
||||
arg_name : str
|
||||
Name of the argument. To be reflected in the error message.
|
||||
none_allowed : bool, default True
|
||||
Whether to consider None to be a valid boolean.
|
||||
int_allowed : bool, default False
|
||||
Whether to consider integer value to be a valid boolean.
|
||||
|
||||
Returns
|
||||
-------
|
||||
value
|
||||
The same value as input.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError
|
||||
If the value is not a valid boolean.
|
||||
"""
|
||||
good_value = is_bool(value)
|
||||
if none_allowed:
|
||||
good_value = good_value or value is None
|
||||
|
||||
if int_allowed:
|
||||
good_value = good_value or isinstance(value, int)
|
||||
|
||||
if not good_value:
|
||||
raise ValueError(
|
||||
f'For argument "{arg_name}" expected type bool, received '
|
||||
f"type {type(value).__name__}."
|
||||
)
|
||||
return value
|
||||
|
||||
|
||||
def validate_axis_style_args(data, args, kwargs, arg_name, method_name):
|
||||
"""
|
||||
Argument handler for mixed index, columns / axis functions
|
||||
|
||||
In an attempt to handle both `.method(index, columns)`, and
|
||||
`.method(arg, axis=.)`, we have to do some bad things to argument
|
||||
parsing. This translates all arguments to `{index=., columns=.}` style.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
data : DataFrame
|
||||
args : tuple
|
||||
All positional arguments from the user
|
||||
kwargs : dict
|
||||
All keyword arguments from the user
|
||||
arg_name, method_name : str
|
||||
Used for better error messages
|
||||
|
||||
Returns
|
||||
-------
|
||||
kwargs : dict
|
||||
A dictionary of keyword arguments. Doesn't modify ``kwargs``
|
||||
inplace, so update them with the return value here.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> df = pd.DataFrame(range(2))
|
||||
>>> validate_axis_style_args(df, (str.upper,), {'columns': id},
|
||||
... 'mapper', 'rename')
|
||||
{'columns': <built-in function id>, 'index': <method 'upper' of 'str' objects>}
|
||||
|
||||
This emits a warning
|
||||
>>> validate_axis_style_args(df, (str.upper, id), {},
|
||||
... 'mapper', 'rename')
|
||||
{'index': <method 'upper' of 'str' objects>, 'columns': <built-in function id>}
|
||||
"""
|
||||
# TODO: Change to keyword-only args and remove all this
|
||||
|
||||
out = {}
|
||||
# Goal: fill 'out' with index/columns-style arguments
|
||||
# like out = {'index': foo, 'columns': bar}
|
||||
|
||||
# Start by validating for consistency
|
||||
if "axis" in kwargs and any(x in kwargs for x in data._AXIS_TO_AXIS_NUMBER):
|
||||
msg = "Cannot specify both 'axis' and any of 'index' or 'columns'."
|
||||
raise TypeError(msg)
|
||||
|
||||
# First fill with explicit values provided by the user...
|
||||
if arg_name in kwargs:
|
||||
if args:
|
||||
msg = f"{method_name} got multiple values for argument '{arg_name}'"
|
||||
raise TypeError(msg)
|
||||
|
||||
axis = data._get_axis_name(kwargs.get("axis", 0))
|
||||
out[axis] = kwargs[arg_name]
|
||||
|
||||
# More user-provided arguments, now from kwargs
|
||||
for k, v in kwargs.items():
|
||||
try:
|
||||
ax = data._get_axis_name(k)
|
||||
except ValueError:
|
||||
pass
|
||||
else:
|
||||
out[ax] = v
|
||||
|
||||
# All user-provided kwargs have been handled now.
|
||||
# Now we supplement with positional arguments, emitting warnings
|
||||
# when there's ambiguity and raising when there's conflicts
|
||||
|
||||
if len(args) == 0:
|
||||
pass # It's up to the function to decide if this is valid
|
||||
elif len(args) == 1:
|
||||
axis = data._get_axis_name(kwargs.get("axis", 0))
|
||||
out[axis] = args[0]
|
||||
elif len(args) == 2:
|
||||
if "axis" in kwargs:
|
||||
# Unambiguously wrong
|
||||
msg = "Cannot specify both 'axis' and any of 'index' or 'columns'"
|
||||
raise TypeError(msg)
|
||||
|
||||
msg = (
|
||||
f"Interpreting call\n\t'.{method_name}(a, b)' as "
|
||||
f"\n\t'.{method_name}(index=a, columns=b)'.\nUse named "
|
||||
"arguments to remove any ambiguity. In the future, using "
|
||||
"positional arguments for 'index' or 'columns' will raise "
|
||||
"a 'TypeError'."
|
||||
)
|
||||
warnings.warn(msg, FutureWarning, stacklevel=find_stack_level())
|
||||
out[data._get_axis_name(0)] = args[0]
|
||||
out[data._get_axis_name(1)] = args[1]
|
||||
else:
|
||||
msg = f"Cannot specify all of '{arg_name}', 'index', 'columns'."
|
||||
raise TypeError(msg)
|
||||
return out
|
||||
|
||||
|
||||
def validate_fillna_kwargs(value, method, validate_scalar_dict_value=True):
|
||||
"""
|
||||
Validate the keyword arguments to 'fillna'.
|
||||
|
||||
This checks that exactly one of 'value' and 'method' is specified.
|
||||
If 'method' is specified, this validates that it's a valid method.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
value, method : object
|
||||
The 'value' and 'method' keyword arguments for 'fillna'.
|
||||
validate_scalar_dict_value : bool, default True
|
||||
Whether to validate that 'value' is a scalar or dict. Specifically,
|
||||
validate that it is not a list or tuple.
|
||||
|
||||
Returns
|
||||
-------
|
||||
value, method : object
|
||||
"""
|
||||
from pandas.core.missing import clean_fill_method
|
||||
|
||||
if value is None and method is None:
|
||||
raise ValueError("Must specify a fill 'value' or 'method'.")
|
||||
elif value is None and method is not None:
|
||||
method = clean_fill_method(method)
|
||||
|
||||
elif value is not None and method is None:
|
||||
if validate_scalar_dict_value and isinstance(value, (list, tuple)):
|
||||
raise TypeError(
|
||||
'"value" parameter must be a scalar or dict, but '
|
||||
f'you passed a "{type(value).__name__}"'
|
||||
)
|
||||
|
||||
elif value is not None and method is not None:
|
||||
raise ValueError("Cannot specify both 'value' and 'method'.")
|
||||
|
||||
return value, method
|
||||
|
||||
|
||||
def validate_percentile(q: float | Iterable[float]) -> np.ndarray:
|
||||
"""
|
||||
Validate percentiles (used by describe and quantile).
|
||||
|
||||
This function checks if the given float or iterable of floats is a valid percentile
|
||||
otherwise raises a ValueError.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
q: float or iterable of floats
|
||||
A single percentile or an iterable of percentiles.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ndarray
|
||||
An ndarray of the percentiles if valid.
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError if percentiles are not in given interval([0, 1]).
|
||||
"""
|
||||
q_arr = np.asarray(q)
|
||||
# Don't change this to an f-string. The string formatting
|
||||
# is too expensive for cases where we don't need it.
|
||||
msg = "percentiles should all be in the interval [0, 1]. Try {} instead."
|
||||
if q_arr.ndim == 0:
|
||||
if not 0 <= q_arr <= 1:
|
||||
raise ValueError(msg.format(q_arr / 100.0))
|
||||
else:
|
||||
if not all(0 <= qs <= 1 for qs in q_arr):
|
||||
raise ValueError(msg.format(q_arr / 100.0))
|
||||
return q_arr
|
||||
|
||||
|
||||
def validate_ascending(
|
||||
ascending: bool | int | Sequence[bool | int] = True,
|
||||
):
|
||||
"""Validate ``ascending`` kwargs for ``sort_index`` method."""
|
||||
kwargs = {"none_allowed": False, "int_allowed": True}
|
||||
if not isinstance(ascending, (list, tuple)):
|
||||
return validate_bool_kwarg(ascending, "ascending", **kwargs)
|
||||
|
||||
return [validate_bool_kwarg(item, "ascending", **kwargs) for item in ascending]
|
||||
|
||||
|
||||
def validate_endpoints(closed: str | None) -> tuple[bool, bool]:
|
||||
"""
|
||||
Check that the `closed` argument is among [None, "left", "right"]
|
||||
|
||||
Parameters
|
||||
----------
|
||||
closed : {None, "left", "right"}
|
||||
|
||||
Returns
|
||||
-------
|
||||
left_closed : bool
|
||||
right_closed : bool
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError : if argument is not among valid values
|
||||
"""
|
||||
left_closed = False
|
||||
right_closed = False
|
||||
|
||||
if closed is None:
|
||||
left_closed = True
|
||||
right_closed = True
|
||||
elif closed == "left":
|
||||
left_closed = True
|
||||
elif closed == "right":
|
||||
right_closed = True
|
||||
else:
|
||||
raise ValueError("Closed has to be either 'left', 'right' or None")
|
||||
|
||||
return left_closed, right_closed
|
||||
|
||||
|
||||
def validate_inclusive(inclusive: str | None) -> tuple[bool, bool]:
|
||||
"""
|
||||
Check that the `inclusive` argument is among {"both", "neither", "left", "right"}.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
inclusive : {"both", "neither", "left", "right"}
|
||||
|
||||
Returns
|
||||
-------
|
||||
left_right_inclusive : tuple[bool, bool]
|
||||
|
||||
Raises
|
||||
------
|
||||
ValueError : if argument is not among valid values
|
||||
"""
|
||||
left_right_inclusive: tuple[bool, bool] | None = None
|
||||
|
||||
if isinstance(inclusive, str):
|
||||
left_right_inclusive = {
|
||||
"both": (True, True),
|
||||
"left": (True, False),
|
||||
"right": (False, True),
|
||||
"neither": (False, False),
|
||||
}.get(inclusive)
|
||||
|
||||
if left_right_inclusive is None:
|
||||
raise ValueError(
|
||||
"Inclusive has to be either 'both', 'neither', 'left' or 'right'"
|
||||
)
|
||||
|
||||
return left_right_inclusive
|
||||
|
||||
|
||||
def validate_insert_loc(loc: int, length: int) -> int:
|
||||
"""
|
||||
Check that we have an integer between -length and length, inclusive.
|
||||
|
||||
Standardize negative loc to within [0, length].
|
||||
|
||||
The exceptions we raise on failure match np.insert.
|
||||
"""
|
||||
if not is_integer(loc):
|
||||
raise TypeError(f"loc must be an integer between -{length} and {length}")
|
||||
|
||||
if loc < 0:
|
||||
loc += length
|
||||
if not 0 <= loc <= length:
|
||||
raise IndexError(f"loc must be an integer between -{length} and {length}")
|
||||
return loc
|
||||
Reference in New Issue
Block a user