针对pulse-transit的工具
This commit is contained in:
		
							
								
								
									
										411
									
								
								dist/client/pandas/tests/window/test_numba.py
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										411
									
								
								dist/client/pandas/tests/window/test_numba.py
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,411 @@
 | 
			
		||||
import numpy as np
 | 
			
		||||
import pytest
 | 
			
		||||
 | 
			
		||||
from pandas.compat import (
 | 
			
		||||
    is_ci_environment,
 | 
			
		||||
    is_platform_mac,
 | 
			
		||||
    is_platform_windows,
 | 
			
		||||
)
 | 
			
		||||
from pandas.errors import NumbaUtilError
 | 
			
		||||
import pandas.util._test_decorators as td
 | 
			
		||||
 | 
			
		||||
from pandas import (
 | 
			
		||||
    DataFrame,
 | 
			
		||||
    Series,
 | 
			
		||||
    option_context,
 | 
			
		||||
    to_datetime,
 | 
			
		||||
)
 | 
			
		||||
import pandas._testing as tm
 | 
			
		||||
from pandas.core.util.numba_ import NUMBA_FUNC_CACHE
 | 
			
		||||
 | 
			
		||||
# TODO(GH#44584): Mark these as pytest.mark.single_cpu
 | 
			
		||||
pytestmark = pytest.mark.skipif(
 | 
			
		||||
    is_ci_environment() and (is_platform_windows() or is_platform_mac()),
 | 
			
		||||
    reason="On GHA CI, Windows can fail with "
 | 
			
		||||
    "'Windows fatal exception: stack overflow' "
 | 
			
		||||
    "and MacOS can timeout",
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@td.skip_if_no("numba")
 | 
			
		||||
@pytest.mark.filterwarnings("ignore:\n")
 | 
			
		||||
# Filter warnings when parallel=True and the function can't be parallelized by Numba
 | 
			
		||||
class TestEngine:
 | 
			
		||||
    @pytest.mark.parametrize("jit", [True, False])
 | 
			
		||||
    def test_numba_vs_cython_apply(self, jit, nogil, parallel, nopython, center):
 | 
			
		||||
        def f(x, *args):
 | 
			
		||||
            arg_sum = 0
 | 
			
		||||
            for arg in args:
 | 
			
		||||
                arg_sum += arg
 | 
			
		||||
            return np.mean(x) + arg_sum
 | 
			
		||||
 | 
			
		||||
        if jit:
 | 
			
		||||
            import numba
 | 
			
		||||
 | 
			
		||||
            f = numba.jit(f)
 | 
			
		||||
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
        args = (2,)
 | 
			
		||||
 | 
			
		||||
        s = Series(range(10))
 | 
			
		||||
        result = s.rolling(2, center=center).apply(
 | 
			
		||||
            f, args=args, engine="numba", engine_kwargs=engine_kwargs, raw=True
 | 
			
		||||
        )
 | 
			
		||||
        expected = s.rolling(2, center=center).apply(
 | 
			
		||||
            f, engine="cython", args=args, raw=True
 | 
			
		||||
        )
 | 
			
		||||
        tm.assert_series_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize(
 | 
			
		||||
        "data", [DataFrame(np.eye(5)), Series(range(5), name="foo")]
 | 
			
		||||
    )
 | 
			
		||||
    def test_numba_vs_cython_rolling_methods(
 | 
			
		||||
        self, data, nogil, parallel, nopython, arithmetic_numba_supported_operators
 | 
			
		||||
    ):
 | 
			
		||||
 | 
			
		||||
        method, kwargs = arithmetic_numba_supported_operators
 | 
			
		||||
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
 | 
			
		||||
        roll = data.rolling(2)
 | 
			
		||||
        result = getattr(roll, method)(
 | 
			
		||||
            engine="numba", engine_kwargs=engine_kwargs, **kwargs
 | 
			
		||||
        )
 | 
			
		||||
        expected = getattr(roll, method)(engine="cython", **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Check the cache
 | 
			
		||||
        if method not in ("mean", "sum", "var", "std", "max", "min"):
 | 
			
		||||
            assert (
 | 
			
		||||
                getattr(np, f"nan{method}"),
 | 
			
		||||
                "Rolling_apply_single",
 | 
			
		||||
            ) in NUMBA_FUNC_CACHE
 | 
			
		||||
 | 
			
		||||
        tm.assert_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize(
 | 
			
		||||
        "data", [DataFrame(np.eye(5)), Series(range(5), name="foo")]
 | 
			
		||||
    )
 | 
			
		||||
    def test_numba_vs_cython_expanding_methods(
 | 
			
		||||
        self, data, nogil, parallel, nopython, arithmetic_numba_supported_operators
 | 
			
		||||
    ):
 | 
			
		||||
 | 
			
		||||
        method, kwargs = arithmetic_numba_supported_operators
 | 
			
		||||
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
 | 
			
		||||
        data = DataFrame(np.eye(5))
 | 
			
		||||
        expand = data.expanding()
 | 
			
		||||
        result = getattr(expand, method)(
 | 
			
		||||
            engine="numba", engine_kwargs=engine_kwargs, **kwargs
 | 
			
		||||
        )
 | 
			
		||||
        expected = getattr(expand, method)(engine="cython", **kwargs)
 | 
			
		||||
 | 
			
		||||
        # Check the cache
 | 
			
		||||
        if method not in ("mean", "sum", "var", "std", "max", "min"):
 | 
			
		||||
            assert (
 | 
			
		||||
                getattr(np, f"nan{method}"),
 | 
			
		||||
                "Expanding_apply_single",
 | 
			
		||||
            ) in NUMBA_FUNC_CACHE
 | 
			
		||||
 | 
			
		||||
        tm.assert_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize("jit", [True, False])
 | 
			
		||||
    def test_cache_apply(self, jit, nogil, parallel, nopython):
 | 
			
		||||
        # Test that the functions are cached correctly if we switch functions
 | 
			
		||||
        def func_1(x):
 | 
			
		||||
            return np.mean(x) + 4
 | 
			
		||||
 | 
			
		||||
        def func_2(x):
 | 
			
		||||
            return np.std(x) * 5
 | 
			
		||||
 | 
			
		||||
        if jit:
 | 
			
		||||
            import numba
 | 
			
		||||
 | 
			
		||||
            func_1 = numba.jit(func_1)
 | 
			
		||||
            func_2 = numba.jit(func_2)
 | 
			
		||||
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
 | 
			
		||||
        roll = Series(range(10)).rolling(2)
 | 
			
		||||
        result = roll.apply(
 | 
			
		||||
            func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True
 | 
			
		||||
        )
 | 
			
		||||
        expected = roll.apply(func_1, engine="cython", raw=True)
 | 
			
		||||
        tm.assert_series_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
        # func_1 should be in the cache now
 | 
			
		||||
        assert (func_1, "Rolling_apply_single") in NUMBA_FUNC_CACHE
 | 
			
		||||
 | 
			
		||||
        result = roll.apply(
 | 
			
		||||
            func_2, engine="numba", engine_kwargs=engine_kwargs, raw=True
 | 
			
		||||
        )
 | 
			
		||||
        expected = roll.apply(func_2, engine="cython", raw=True)
 | 
			
		||||
        tm.assert_series_equal(result, expected)
 | 
			
		||||
        # This run should use the cached func_1
 | 
			
		||||
        result = roll.apply(
 | 
			
		||||
            func_1, engine="numba", engine_kwargs=engine_kwargs, raw=True
 | 
			
		||||
        )
 | 
			
		||||
        expected = roll.apply(func_1, engine="cython", raw=True)
 | 
			
		||||
        tm.assert_series_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize(
 | 
			
		||||
        "window,window_kwargs",
 | 
			
		||||
        [
 | 
			
		||||
            ["rolling", {"window": 3, "min_periods": 0}],
 | 
			
		||||
            ["expanding", {}],
 | 
			
		||||
        ],
 | 
			
		||||
    )
 | 
			
		||||
    def test_dont_cache_args(
 | 
			
		||||
        self, window, window_kwargs, nogil, parallel, nopython, method
 | 
			
		||||
    ):
 | 
			
		||||
        # GH 42287
 | 
			
		||||
 | 
			
		||||
        def add(values, x):
 | 
			
		||||
            return np.sum(values) + x
 | 
			
		||||
 | 
			
		||||
        engine_kwargs = {"nopython": nopython, "nogil": nogil, "parallel": parallel}
 | 
			
		||||
        df = DataFrame({"value": [0, 0, 0]})
 | 
			
		||||
        result = getattr(df, window)(method=method, **window_kwargs).apply(
 | 
			
		||||
            add, raw=True, engine="numba", engine_kwargs=engine_kwargs, args=(1,)
 | 
			
		||||
        )
 | 
			
		||||
        expected = DataFrame({"value": [1.0, 1.0, 1.0]})
 | 
			
		||||
        tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
        result = getattr(df, window)(method=method, **window_kwargs).apply(
 | 
			
		||||
            add, raw=True, engine="numba", engine_kwargs=engine_kwargs, args=(2,)
 | 
			
		||||
        )
 | 
			
		||||
        expected = DataFrame({"value": [2.0, 2.0, 2.0]})
 | 
			
		||||
        tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@td.skip_if_no("numba")
 | 
			
		||||
class TestEWM:
 | 
			
		||||
    @pytest.mark.parametrize(
 | 
			
		||||
        "grouper", [lambda x: x, lambda x: x.groupby("A")], ids=["None", "groupby"]
 | 
			
		||||
    )
 | 
			
		||||
    @pytest.mark.parametrize("method", ["mean", "sum"])
 | 
			
		||||
    def test_invalid_engine(self, grouper, method):
 | 
			
		||||
        df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)})
 | 
			
		||||
        with pytest.raises(ValueError, match="engine must be either"):
 | 
			
		||||
            getattr(grouper(df).ewm(com=1.0), method)(engine="foo")
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize(
 | 
			
		||||
        "grouper", [lambda x: x, lambda x: x.groupby("A")], ids=["None", "groupby"]
 | 
			
		||||
    )
 | 
			
		||||
    @pytest.mark.parametrize("method", ["mean", "sum"])
 | 
			
		||||
    def test_invalid_engine_kwargs(self, grouper, method):
 | 
			
		||||
        df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)})
 | 
			
		||||
        with pytest.raises(ValueError, match="cython engine does not"):
 | 
			
		||||
            getattr(grouper(df).ewm(com=1.0), method)(
 | 
			
		||||
                engine="cython", engine_kwargs={"nopython": True}
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize("grouper", ["None", "groupby"])
 | 
			
		||||
    @pytest.mark.parametrize("method", ["mean", "sum"])
 | 
			
		||||
    def test_cython_vs_numba(
 | 
			
		||||
        self, grouper, method, nogil, parallel, nopython, ignore_na, adjust
 | 
			
		||||
    ):
 | 
			
		||||
        if grouper == "None":
 | 
			
		||||
            grouper = lambda x: x
 | 
			
		||||
            warn = FutureWarning
 | 
			
		||||
        else:
 | 
			
		||||
            grouper = lambda x: x.groupby("A")
 | 
			
		||||
            warn = None
 | 
			
		||||
        if method == "sum":
 | 
			
		||||
            adjust = True
 | 
			
		||||
        df = DataFrame({"A": ["a", "b", "a", "b"], "B": range(4)})
 | 
			
		||||
        ewm = grouper(df).ewm(com=1.0, adjust=adjust, ignore_na=ignore_na)
 | 
			
		||||
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
        with tm.assert_produces_warning(warn, match="nuisance"):
 | 
			
		||||
            # GH#42738
 | 
			
		||||
            result = getattr(ewm, method)(engine="numba", engine_kwargs=engine_kwargs)
 | 
			
		||||
            expected = getattr(ewm, method)(engine="cython")
 | 
			
		||||
 | 
			
		||||
        tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize("grouper", ["None", "groupby"])
 | 
			
		||||
    def test_cython_vs_numba_times(self, grouper, nogil, parallel, nopython, ignore_na):
 | 
			
		||||
        # GH 40951
 | 
			
		||||
 | 
			
		||||
        if grouper == "None":
 | 
			
		||||
            grouper = lambda x: x
 | 
			
		||||
            warn = FutureWarning
 | 
			
		||||
        else:
 | 
			
		||||
            grouper = lambda x: x.groupby("A")
 | 
			
		||||
            warn = None
 | 
			
		||||
 | 
			
		||||
        halflife = "23 days"
 | 
			
		||||
        times = to_datetime(
 | 
			
		||||
            [
 | 
			
		||||
                "2020-01-01",
 | 
			
		||||
                "2020-01-01",
 | 
			
		||||
                "2020-01-02",
 | 
			
		||||
                "2020-01-10",
 | 
			
		||||
                "2020-02-23",
 | 
			
		||||
                "2020-01-03",
 | 
			
		||||
            ]
 | 
			
		||||
        )
 | 
			
		||||
        df = DataFrame({"A": ["a", "b", "a", "b", "b", "a"], "B": [0, 0, 1, 1, 2, 2]})
 | 
			
		||||
        ewm = grouper(df).ewm(
 | 
			
		||||
            halflife=halflife, adjust=True, ignore_na=ignore_na, times=times
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
 | 
			
		||||
        with tm.assert_produces_warning(warn, match="nuisance"):
 | 
			
		||||
            # GH#42738
 | 
			
		||||
            result = ewm.mean(engine="numba", engine_kwargs=engine_kwargs)
 | 
			
		||||
            expected = ewm.mean(engine="cython")
 | 
			
		||||
 | 
			
		||||
        tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@td.skip_if_no("numba")
 | 
			
		||||
def test_use_global_config():
 | 
			
		||||
    def f(x):
 | 
			
		||||
        return np.mean(x) + 2
 | 
			
		||||
 | 
			
		||||
    s = Series(range(10))
 | 
			
		||||
    with option_context("compute.use_numba", True):
 | 
			
		||||
        result = s.rolling(2).apply(f, engine=None, raw=True)
 | 
			
		||||
    expected = s.rolling(2).apply(f, engine="numba", raw=True)
 | 
			
		||||
    tm.assert_series_equal(expected, result)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@td.skip_if_no("numba")
 | 
			
		||||
def test_invalid_kwargs_nopython():
 | 
			
		||||
    with pytest.raises(NumbaUtilError, match="numba does not support kwargs with"):
 | 
			
		||||
        Series(range(1)).rolling(1).apply(
 | 
			
		||||
            lambda x: x, kwargs={"a": 1}, engine="numba", raw=True
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@td.skip_if_no("numba")
 | 
			
		||||
@pytest.mark.slow
 | 
			
		||||
@pytest.mark.filterwarnings("ignore:\n")
 | 
			
		||||
# Filter warnings when parallel=True and the function can't be parallelized by Numba
 | 
			
		||||
class TestTableMethod:
 | 
			
		||||
    def test_table_series_valueerror(self):
 | 
			
		||||
        def f(x):
 | 
			
		||||
            return np.sum(x, axis=0) + 1
 | 
			
		||||
 | 
			
		||||
        with pytest.raises(
 | 
			
		||||
            ValueError, match="method='table' not applicable for Series objects."
 | 
			
		||||
        ):
 | 
			
		||||
            Series(range(1)).rolling(1, method="table").apply(
 | 
			
		||||
                f, engine="numba", raw=True
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    def test_table_method_rolling_methods(
 | 
			
		||||
        self, axis, nogil, parallel, nopython, arithmetic_numba_supported_operators
 | 
			
		||||
    ):
 | 
			
		||||
        method, kwargs = arithmetic_numba_supported_operators
 | 
			
		||||
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
 | 
			
		||||
        df = DataFrame(np.eye(3))
 | 
			
		||||
        roll_table = df.rolling(2, method="table", axis=axis, min_periods=0)
 | 
			
		||||
        if method in ("var", "std"):
 | 
			
		||||
            with pytest.raises(NotImplementedError, match=f"{method} not supported"):
 | 
			
		||||
                getattr(roll_table, method)(
 | 
			
		||||
                    engine_kwargs=engine_kwargs, engine="numba", **kwargs
 | 
			
		||||
                )
 | 
			
		||||
        else:
 | 
			
		||||
            roll_single = df.rolling(2, method="single", axis=axis, min_periods=0)
 | 
			
		||||
            result = getattr(roll_table, method)(
 | 
			
		||||
                engine_kwargs=engine_kwargs, engine="numba", **kwargs
 | 
			
		||||
            )
 | 
			
		||||
            expected = getattr(roll_single, method)(
 | 
			
		||||
                engine_kwargs=engine_kwargs, engine="numba", **kwargs
 | 
			
		||||
            )
 | 
			
		||||
            tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    def test_table_method_rolling_apply(self, axis, nogil, parallel, nopython):
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
 | 
			
		||||
        def f(x):
 | 
			
		||||
            return np.sum(x, axis=0) + 1
 | 
			
		||||
 | 
			
		||||
        df = DataFrame(np.eye(3))
 | 
			
		||||
        result = df.rolling(2, method="table", axis=axis, min_periods=0).apply(
 | 
			
		||||
            f, raw=True, engine_kwargs=engine_kwargs, engine="numba"
 | 
			
		||||
        )
 | 
			
		||||
        expected = df.rolling(2, method="single", axis=axis, min_periods=0).apply(
 | 
			
		||||
            f, raw=True, engine_kwargs=engine_kwargs, engine="numba"
 | 
			
		||||
        )
 | 
			
		||||
        tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    def test_table_method_rolling_weighted_mean(self):
 | 
			
		||||
        def weighted_mean(x):
 | 
			
		||||
            arr = np.ones((1, x.shape[1]))
 | 
			
		||||
            arr[:, :2] = (x[:, :2] * x[:, 2]).sum(axis=0) / x[:, 2].sum()
 | 
			
		||||
            return arr
 | 
			
		||||
 | 
			
		||||
        df = DataFrame([[1, 2, 0.6], [2, 3, 0.4], [3, 4, 0.2], [4, 5, 0.7]])
 | 
			
		||||
        result = df.rolling(2, method="table", min_periods=0).apply(
 | 
			
		||||
            weighted_mean, raw=True, engine="numba"
 | 
			
		||||
        )
 | 
			
		||||
        expected = DataFrame(
 | 
			
		||||
            [
 | 
			
		||||
                [1.0, 2.0, 1.0],
 | 
			
		||||
                [1.8, 2.0, 1.0],
 | 
			
		||||
                [3.333333, 2.333333, 1.0],
 | 
			
		||||
                [1.555556, 7, 1.0],
 | 
			
		||||
            ]
 | 
			
		||||
        )
 | 
			
		||||
        tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    def test_table_method_expanding_apply(self, axis, nogil, parallel, nopython):
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
 | 
			
		||||
        def f(x):
 | 
			
		||||
            return np.sum(x, axis=0) + 1
 | 
			
		||||
 | 
			
		||||
        df = DataFrame(np.eye(3))
 | 
			
		||||
        result = df.expanding(method="table", axis=axis).apply(
 | 
			
		||||
            f, raw=True, engine_kwargs=engine_kwargs, engine="numba"
 | 
			
		||||
        )
 | 
			
		||||
        expected = df.expanding(method="single", axis=axis).apply(
 | 
			
		||||
            f, raw=True, engine_kwargs=engine_kwargs, engine="numba"
 | 
			
		||||
        )
 | 
			
		||||
        tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    def test_table_method_expanding_methods(
 | 
			
		||||
        self, axis, nogil, parallel, nopython, arithmetic_numba_supported_operators
 | 
			
		||||
    ):
 | 
			
		||||
        method, kwargs = arithmetic_numba_supported_operators
 | 
			
		||||
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
 | 
			
		||||
        df = DataFrame(np.eye(3))
 | 
			
		||||
        expand_table = df.expanding(method="table", axis=axis)
 | 
			
		||||
        if method in ("var", "std"):
 | 
			
		||||
            with pytest.raises(NotImplementedError, match=f"{method} not supported"):
 | 
			
		||||
                getattr(expand_table, method)(
 | 
			
		||||
                    engine_kwargs=engine_kwargs, engine="numba", **kwargs
 | 
			
		||||
                )
 | 
			
		||||
        else:
 | 
			
		||||
            expand_single = df.expanding(method="single", axis=axis)
 | 
			
		||||
            result = getattr(expand_table, method)(
 | 
			
		||||
                engine_kwargs=engine_kwargs, engine="numba", **kwargs
 | 
			
		||||
            )
 | 
			
		||||
            expected = getattr(expand_single, method)(
 | 
			
		||||
                engine_kwargs=engine_kwargs, engine="numba", **kwargs
 | 
			
		||||
            )
 | 
			
		||||
            tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize("data", [np.eye(3), np.ones((2, 3)), np.ones((3, 2))])
 | 
			
		||||
    @pytest.mark.parametrize("method", ["mean", "sum"])
 | 
			
		||||
    def test_table_method_ewm(self, data, method, axis, nogil, parallel, nopython):
 | 
			
		||||
        engine_kwargs = {"nogil": nogil, "parallel": parallel, "nopython": nopython}
 | 
			
		||||
 | 
			
		||||
        df = DataFrame(data)
 | 
			
		||||
 | 
			
		||||
        result = getattr(df.ewm(com=1, method="table", axis=axis), method)(
 | 
			
		||||
            engine_kwargs=engine_kwargs, engine="numba"
 | 
			
		||||
        )
 | 
			
		||||
        expected = getattr(df.ewm(com=1, method="single", axis=axis), method)(
 | 
			
		||||
            engine_kwargs=engine_kwargs, engine="numba"
 | 
			
		||||
        )
 | 
			
		||||
        tm.assert_frame_equal(result, expected)
 | 
			
		||||
		Reference in New Issue
	
	Block a user