针对pulse-transit的工具
This commit is contained in:
		
							
								
								
									
										481
									
								
								dist/client/pandas/tests/extension/decimal/test_decimal.py
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										481
									
								
								dist/client/pandas/tests/extension/decimal/test_decimal.py
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@@ -0,0 +1,481 @@
 | 
			
		||||
import decimal
 | 
			
		||||
import operator
 | 
			
		||||
 | 
			
		||||
import numpy as np
 | 
			
		||||
import pytest
 | 
			
		||||
 | 
			
		||||
import pandas as pd
 | 
			
		||||
import pandas._testing as tm
 | 
			
		||||
from pandas.api.types import infer_dtype
 | 
			
		||||
from pandas.tests.extension import base
 | 
			
		||||
from pandas.tests.extension.decimal.array import (
 | 
			
		||||
    DecimalArray,
 | 
			
		||||
    DecimalDtype,
 | 
			
		||||
    make_data,
 | 
			
		||||
    to_decimal,
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.fixture
 | 
			
		||||
def dtype():
 | 
			
		||||
    return DecimalDtype()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.fixture
 | 
			
		||||
def data():
 | 
			
		||||
    return DecimalArray(make_data())
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.fixture
 | 
			
		||||
def data_for_twos():
 | 
			
		||||
    return DecimalArray([decimal.Decimal(2) for _ in range(100)])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.fixture
 | 
			
		||||
def data_missing():
 | 
			
		||||
    return DecimalArray([decimal.Decimal("NaN"), decimal.Decimal(1)])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.fixture
 | 
			
		||||
def data_for_sorting():
 | 
			
		||||
    return DecimalArray(
 | 
			
		||||
        [decimal.Decimal("1"), decimal.Decimal("2"), decimal.Decimal("0")]
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.fixture
 | 
			
		||||
def data_missing_for_sorting():
 | 
			
		||||
    return DecimalArray(
 | 
			
		||||
        [decimal.Decimal("1"), decimal.Decimal("NaN"), decimal.Decimal("0")]
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.fixture
 | 
			
		||||
def na_cmp():
 | 
			
		||||
    return lambda x, y: x.is_nan() and y.is_nan()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.fixture
 | 
			
		||||
def na_value():
 | 
			
		||||
    return decimal.Decimal("NaN")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.fixture
 | 
			
		||||
def data_for_grouping():
 | 
			
		||||
    b = decimal.Decimal("1.0")
 | 
			
		||||
    a = decimal.Decimal("0.0")
 | 
			
		||||
    c = decimal.Decimal("2.0")
 | 
			
		||||
    na = decimal.Decimal("NaN")
 | 
			
		||||
    return DecimalArray([b, b, na, na, a, a, b, c])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestDtype(base.BaseDtypeTests):
 | 
			
		||||
    def test_hashable(self, dtype):
 | 
			
		||||
        pass
 | 
			
		||||
 | 
			
		||||
    @pytest.mark.parametrize("skipna", [True, False])
 | 
			
		||||
    def test_infer_dtype(self, data, data_missing, skipna):
 | 
			
		||||
        # here overriding base test to ensure we fall back to return
 | 
			
		||||
        # "unknown-array" for an EA pandas doesn't know
 | 
			
		||||
        assert infer_dtype(data, skipna=skipna) == "unknown-array"
 | 
			
		||||
        assert infer_dtype(data_missing, skipna=skipna) == "unknown-array"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestInterface(base.BaseInterfaceTests):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestConstructors(base.BaseConstructorsTests):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestReshaping(base.BaseReshapingTests):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestGetitem(base.BaseGetitemTests):
 | 
			
		||||
    def test_take_na_value_other_decimal(self):
 | 
			
		||||
        arr = DecimalArray([decimal.Decimal("1.0"), decimal.Decimal("2.0")])
 | 
			
		||||
        result = arr.take([0, -1], allow_fill=True, fill_value=decimal.Decimal("-1.0"))
 | 
			
		||||
        expected = DecimalArray([decimal.Decimal("1.0"), decimal.Decimal("-1.0")])
 | 
			
		||||
        self.assert_extension_array_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestIndex(base.BaseIndexTests):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestMissing(base.BaseMissingTests):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Reduce:
 | 
			
		||||
    def check_reduce(self, s, op_name, skipna):
 | 
			
		||||
 | 
			
		||||
        if op_name in ["median", "skew", "kurt"]:
 | 
			
		||||
            msg = r"decimal does not support the .* operation"
 | 
			
		||||
            with pytest.raises(NotImplementedError, match=msg):
 | 
			
		||||
                getattr(s, op_name)(skipna=skipna)
 | 
			
		||||
 | 
			
		||||
        else:
 | 
			
		||||
            result = getattr(s, op_name)(skipna=skipna)
 | 
			
		||||
            expected = getattr(np.asarray(s), op_name)()
 | 
			
		||||
            tm.assert_almost_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestNumericReduce(Reduce, base.BaseNumericReduceTests):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestBooleanReduce(Reduce, base.BaseBooleanReduceTests):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestMethods(base.BaseMethodsTests):
 | 
			
		||||
    @pytest.mark.parametrize("dropna", [True, False])
 | 
			
		||||
    def test_value_counts(self, all_data, dropna, request):
 | 
			
		||||
        all_data = all_data[:10]
 | 
			
		||||
        if dropna:
 | 
			
		||||
            other = np.array(all_data[~all_data.isna()])
 | 
			
		||||
        else:
 | 
			
		||||
            other = all_data
 | 
			
		||||
 | 
			
		||||
        vcs = pd.Series(all_data).value_counts(dropna=dropna)
 | 
			
		||||
        vcs_ex = pd.Series(other).value_counts(dropna=dropna)
 | 
			
		||||
 | 
			
		||||
        with decimal.localcontext() as ctx:
 | 
			
		||||
            # avoid raising when comparing Decimal("NAN") < Decimal(2)
 | 
			
		||||
            ctx.traps[decimal.InvalidOperation] = False
 | 
			
		||||
 | 
			
		||||
            result = vcs.sort_index()
 | 
			
		||||
            expected = vcs_ex.sort_index()
 | 
			
		||||
 | 
			
		||||
        tm.assert_series_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestCasting(base.BaseCastingTests):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestGroupby(base.BaseGroupbyTests):
 | 
			
		||||
    def test_groupby_agg_extension(self, data_for_grouping):
 | 
			
		||||
        super().test_groupby_agg_extension(data_for_grouping)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestSetitem(base.BaseSetitemTests):
 | 
			
		||||
    pass
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestPrinting(base.BasePrintingTests):
 | 
			
		||||
    def test_series_repr(self, data):
 | 
			
		||||
        # Overriding this base test to explicitly test that
 | 
			
		||||
        # the custom _formatter is used
 | 
			
		||||
        ser = pd.Series(data)
 | 
			
		||||
        assert data.dtype.name in repr(ser)
 | 
			
		||||
        assert "Decimal: " in repr(ser)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.xfail(
 | 
			
		||||
    reason=(
 | 
			
		||||
        "DecimalArray constructor raises bc _from_sequence wants Decimals, not ints."
 | 
			
		||||
        "Easy to fix, just need to do it."
 | 
			
		||||
    ),
 | 
			
		||||
    raises=TypeError,
 | 
			
		||||
)
 | 
			
		||||
def test_series_constructor_coerce_data_to_extension_dtype_raises():
 | 
			
		||||
    xpr = (
 | 
			
		||||
        "Cannot cast data to extension dtype 'decimal'. Pass the "
 | 
			
		||||
        "extension array directly."
 | 
			
		||||
    )
 | 
			
		||||
    with pytest.raises(ValueError, match=xpr):
 | 
			
		||||
        pd.Series([0, 1, 2], dtype=DecimalDtype())
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_series_constructor_with_dtype():
 | 
			
		||||
    arr = DecimalArray([decimal.Decimal("10.0")])
 | 
			
		||||
    result = pd.Series(arr, dtype=DecimalDtype())
 | 
			
		||||
    expected = pd.Series(arr)
 | 
			
		||||
    tm.assert_series_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    result = pd.Series(arr, dtype="int64")
 | 
			
		||||
    expected = pd.Series([10])
 | 
			
		||||
    tm.assert_series_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_dataframe_constructor_with_dtype():
 | 
			
		||||
    arr = DecimalArray([decimal.Decimal("10.0")])
 | 
			
		||||
 | 
			
		||||
    result = pd.DataFrame({"A": arr}, dtype=DecimalDtype())
 | 
			
		||||
    expected = pd.DataFrame({"A": arr})
 | 
			
		||||
    tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    arr = DecimalArray([decimal.Decimal("10.0")])
 | 
			
		||||
    result = pd.DataFrame({"A": arr}, dtype="int64")
 | 
			
		||||
    expected = pd.DataFrame({"A": [10]})
 | 
			
		||||
    tm.assert_frame_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize("frame", [True, False])
 | 
			
		||||
def test_astype_dispatches(frame):
 | 
			
		||||
    # This is a dtype-specific test that ensures Series[decimal].astype
 | 
			
		||||
    # gets all the way through to ExtensionArray.astype
 | 
			
		||||
    # Designing a reliable smoke test that works for arbitrary data types
 | 
			
		||||
    # is difficult.
 | 
			
		||||
    data = pd.Series(DecimalArray([decimal.Decimal(2)]), name="a")
 | 
			
		||||
    ctx = decimal.Context()
 | 
			
		||||
    ctx.prec = 5
 | 
			
		||||
 | 
			
		||||
    if frame:
 | 
			
		||||
        data = data.to_frame()
 | 
			
		||||
 | 
			
		||||
    result = data.astype(DecimalDtype(ctx))
 | 
			
		||||
 | 
			
		||||
    if frame:
 | 
			
		||||
        result = result["a"]
 | 
			
		||||
 | 
			
		||||
    assert result.dtype.context.prec == ctx.prec
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestArithmeticOps(base.BaseArithmeticOpsTests):
 | 
			
		||||
    def check_opname(self, s, op_name, other, exc=None):
 | 
			
		||||
        super().check_opname(s, op_name, other, exc=None)
 | 
			
		||||
 | 
			
		||||
    def test_arith_series_with_array(self, data, all_arithmetic_operators):
 | 
			
		||||
        op_name = all_arithmetic_operators
 | 
			
		||||
        s = pd.Series(data)
 | 
			
		||||
 | 
			
		||||
        context = decimal.getcontext()
 | 
			
		||||
        divbyzerotrap = context.traps[decimal.DivisionByZero]
 | 
			
		||||
        invalidoptrap = context.traps[decimal.InvalidOperation]
 | 
			
		||||
        context.traps[decimal.DivisionByZero] = 0
 | 
			
		||||
        context.traps[decimal.InvalidOperation] = 0
 | 
			
		||||
 | 
			
		||||
        # Decimal supports ops with int, but not float
 | 
			
		||||
        other = pd.Series([int(d * 100) for d in data])
 | 
			
		||||
        self.check_opname(s, op_name, other)
 | 
			
		||||
 | 
			
		||||
        if "mod" not in op_name:
 | 
			
		||||
            self.check_opname(s, op_name, s * 2)
 | 
			
		||||
 | 
			
		||||
        self.check_opname(s, op_name, 0)
 | 
			
		||||
        self.check_opname(s, op_name, 5)
 | 
			
		||||
        context.traps[decimal.DivisionByZero] = divbyzerotrap
 | 
			
		||||
        context.traps[decimal.InvalidOperation] = invalidoptrap
 | 
			
		||||
 | 
			
		||||
    def _check_divmod_op(self, s, op, other, exc=NotImplementedError):
 | 
			
		||||
        # We implement divmod
 | 
			
		||||
        super()._check_divmod_op(s, op, other, exc=None)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestComparisonOps(base.BaseComparisonOpsTests):
 | 
			
		||||
    def test_compare_scalar(self, data, comparison_op):
 | 
			
		||||
        s = pd.Series(data)
 | 
			
		||||
        self._compare_other(s, data, comparison_op, 0.5)
 | 
			
		||||
 | 
			
		||||
    def test_compare_array(self, data, comparison_op):
 | 
			
		||||
        s = pd.Series(data)
 | 
			
		||||
 | 
			
		||||
        alter = np.random.choice([-1, 0, 1], len(data))
 | 
			
		||||
        # Randomly double, halve or keep same value
 | 
			
		||||
        other = pd.Series(data) * [decimal.Decimal(pow(2.0, i)) for i in alter]
 | 
			
		||||
        self._compare_other(s, data, comparison_op, other)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DecimalArrayWithoutFromSequence(DecimalArray):
 | 
			
		||||
    """Helper class for testing error handling in _from_sequence."""
 | 
			
		||||
 | 
			
		||||
    def _from_sequence(cls, scalars, dtype=None, copy=False):
 | 
			
		||||
        raise KeyError("For the test")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DecimalArrayWithoutCoercion(DecimalArrayWithoutFromSequence):
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def _create_arithmetic_method(cls, op):
 | 
			
		||||
        return cls._create_method(op, coerce_to_dtype=False)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
DecimalArrayWithoutCoercion._add_arithmetic_ops()
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_combine_from_sequence_raises(monkeypatch):
 | 
			
		||||
    # https://github.com/pandas-dev/pandas/issues/22850
 | 
			
		||||
    cls = DecimalArrayWithoutFromSequence
 | 
			
		||||
 | 
			
		||||
    @classmethod
 | 
			
		||||
    def construct_array_type(cls):
 | 
			
		||||
        return DecimalArrayWithoutFromSequence
 | 
			
		||||
 | 
			
		||||
    monkeypatch.setattr(DecimalDtype, "construct_array_type", construct_array_type)
 | 
			
		||||
 | 
			
		||||
    arr = cls([decimal.Decimal("1.0"), decimal.Decimal("2.0")])
 | 
			
		||||
    ser = pd.Series(arr)
 | 
			
		||||
    result = ser.combine(ser, operator.add)
 | 
			
		||||
 | 
			
		||||
    # note: object dtype
 | 
			
		||||
    expected = pd.Series(
 | 
			
		||||
        [decimal.Decimal("2.0"), decimal.Decimal("4.0")], dtype="object"
 | 
			
		||||
    )
 | 
			
		||||
    tm.assert_series_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize(
 | 
			
		||||
    "class_", [DecimalArrayWithoutFromSequence, DecimalArrayWithoutCoercion]
 | 
			
		||||
)
 | 
			
		||||
def test_scalar_ops_from_sequence_raises(class_):
 | 
			
		||||
    # op(EA, EA) should return an EA, or an ndarray if it's not possible
 | 
			
		||||
    # to return an EA with the return values.
 | 
			
		||||
    arr = class_([decimal.Decimal("1.0"), decimal.Decimal("2.0")])
 | 
			
		||||
    result = arr + arr
 | 
			
		||||
    expected = np.array(
 | 
			
		||||
        [decimal.Decimal("2.0"), decimal.Decimal("4.0")], dtype="object"
 | 
			
		||||
    )
 | 
			
		||||
    tm.assert_numpy_array_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@pytest.mark.parametrize(
 | 
			
		||||
    "reverse, expected_div, expected_mod",
 | 
			
		||||
    [(False, [0, 1, 1, 2], [1, 0, 1, 0]), (True, [2, 1, 0, 0], [0, 0, 2, 2])],
 | 
			
		||||
)
 | 
			
		||||
def test_divmod_array(reverse, expected_div, expected_mod):
 | 
			
		||||
    # https://github.com/pandas-dev/pandas/issues/22930
 | 
			
		||||
    arr = to_decimal([1, 2, 3, 4])
 | 
			
		||||
    if reverse:
 | 
			
		||||
        div, mod = divmod(2, arr)
 | 
			
		||||
    else:
 | 
			
		||||
        div, mod = divmod(arr, 2)
 | 
			
		||||
    expected_div = to_decimal(expected_div)
 | 
			
		||||
    expected_mod = to_decimal(expected_mod)
 | 
			
		||||
 | 
			
		||||
    tm.assert_extension_array_equal(div, expected_div)
 | 
			
		||||
    tm.assert_extension_array_equal(mod, expected_mod)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_ufunc_fallback(data):
 | 
			
		||||
    a = data[:5]
 | 
			
		||||
    s = pd.Series(a, index=range(3, 8))
 | 
			
		||||
    result = np.abs(s)
 | 
			
		||||
    expected = pd.Series(np.abs(a), index=range(3, 8))
 | 
			
		||||
    tm.assert_series_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_array_ufunc():
 | 
			
		||||
    a = to_decimal([1, 2, 3])
 | 
			
		||||
    result = np.exp(a)
 | 
			
		||||
    expected = to_decimal(np.exp(a._data))
 | 
			
		||||
    tm.assert_extension_array_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_array_ufunc_series():
 | 
			
		||||
    a = to_decimal([1, 2, 3])
 | 
			
		||||
    s = pd.Series(a)
 | 
			
		||||
    result = np.exp(s)
 | 
			
		||||
    expected = pd.Series(to_decimal(np.exp(a._data)))
 | 
			
		||||
    tm.assert_series_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_array_ufunc_series_scalar_other():
 | 
			
		||||
    # check _HANDLED_TYPES
 | 
			
		||||
    a = to_decimal([1, 2, 3])
 | 
			
		||||
    s = pd.Series(a)
 | 
			
		||||
    result = np.add(s, decimal.Decimal(1))
 | 
			
		||||
    expected = pd.Series(np.add(a, decimal.Decimal(1)))
 | 
			
		||||
    tm.assert_series_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_array_ufunc_series_defer():
 | 
			
		||||
    a = to_decimal([1, 2, 3])
 | 
			
		||||
    s = pd.Series(a)
 | 
			
		||||
 | 
			
		||||
    expected = pd.Series(to_decimal([2, 4, 6]))
 | 
			
		||||
    r1 = np.add(s, a)
 | 
			
		||||
    r2 = np.add(a, s)
 | 
			
		||||
 | 
			
		||||
    tm.assert_series_equal(r1, expected)
 | 
			
		||||
    tm.assert_series_equal(r2, expected)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_groupby_agg():
 | 
			
		||||
    # Ensure that the result of agg is inferred to be decimal dtype
 | 
			
		||||
    # https://github.com/pandas-dev/pandas/issues/29141
 | 
			
		||||
 | 
			
		||||
    data = make_data()[:5]
 | 
			
		||||
    df = pd.DataFrame(
 | 
			
		||||
        {"id1": [0, 0, 0, 1, 1], "id2": [0, 1, 0, 1, 1], "decimals": DecimalArray(data)}
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # single key, selected column
 | 
			
		||||
    expected = pd.Series(to_decimal([data[0], data[3]]))
 | 
			
		||||
    result = df.groupby("id1")["decimals"].agg(lambda x: x.iloc[0])
 | 
			
		||||
    tm.assert_series_equal(result, expected, check_names=False)
 | 
			
		||||
    result = df["decimals"].groupby(df["id1"]).agg(lambda x: x.iloc[0])
 | 
			
		||||
    tm.assert_series_equal(result, expected, check_names=False)
 | 
			
		||||
 | 
			
		||||
    # multiple keys, selected column
 | 
			
		||||
    expected = pd.Series(
 | 
			
		||||
        to_decimal([data[0], data[1], data[3]]),
 | 
			
		||||
        index=pd.MultiIndex.from_tuples([(0, 0), (0, 1), (1, 1)]),
 | 
			
		||||
    )
 | 
			
		||||
    result = df.groupby(["id1", "id2"])["decimals"].agg(lambda x: x.iloc[0])
 | 
			
		||||
    tm.assert_series_equal(result, expected, check_names=False)
 | 
			
		||||
    result = df["decimals"].groupby([df["id1"], df["id2"]]).agg(lambda x: x.iloc[0])
 | 
			
		||||
    tm.assert_series_equal(result, expected, check_names=False)
 | 
			
		||||
 | 
			
		||||
    # multiple columns
 | 
			
		||||
    expected = pd.DataFrame({"id2": [0, 1], "decimals": to_decimal([data[0], data[3]])})
 | 
			
		||||
    result = df.groupby("id1").agg(lambda x: x.iloc[0])
 | 
			
		||||
    tm.assert_frame_equal(result, expected, check_names=False)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_groupby_agg_ea_method(monkeypatch):
 | 
			
		||||
    # Ensure that the result of agg is inferred to be decimal dtype
 | 
			
		||||
    # https://github.com/pandas-dev/pandas/issues/29141
 | 
			
		||||
 | 
			
		||||
    def DecimalArray__my_sum(self):
 | 
			
		||||
        return np.sum(np.array(self))
 | 
			
		||||
 | 
			
		||||
    monkeypatch.setattr(DecimalArray, "my_sum", DecimalArray__my_sum, raising=False)
 | 
			
		||||
 | 
			
		||||
    data = make_data()[:5]
 | 
			
		||||
    df = pd.DataFrame({"id": [0, 0, 0, 1, 1], "decimals": DecimalArray(data)})
 | 
			
		||||
    expected = pd.Series(to_decimal([data[0] + data[1] + data[2], data[3] + data[4]]))
 | 
			
		||||
 | 
			
		||||
    result = df.groupby("id")["decimals"].agg(lambda x: x.values.my_sum())
 | 
			
		||||
    tm.assert_series_equal(result, expected, check_names=False)
 | 
			
		||||
    s = pd.Series(DecimalArray(data))
 | 
			
		||||
    result = s.groupby(np.array([0, 0, 0, 1, 1])).agg(lambda x: x.values.my_sum())
 | 
			
		||||
    tm.assert_series_equal(result, expected, check_names=False)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_indexing_no_materialize(monkeypatch):
 | 
			
		||||
    # See https://github.com/pandas-dev/pandas/issues/29708
 | 
			
		||||
    # Ensure that indexing operations do not materialize (convert to a numpy
 | 
			
		||||
    # array) the ExtensionArray unnecessary
 | 
			
		||||
 | 
			
		||||
    def DecimalArray__array__(self, dtype=None):
 | 
			
		||||
        raise Exception("tried to convert a DecimalArray to a numpy array")
 | 
			
		||||
 | 
			
		||||
    monkeypatch.setattr(DecimalArray, "__array__", DecimalArray__array__, raising=False)
 | 
			
		||||
 | 
			
		||||
    data = make_data()
 | 
			
		||||
    s = pd.Series(DecimalArray(data))
 | 
			
		||||
    df = pd.DataFrame({"a": s, "b": range(len(s))})
 | 
			
		||||
 | 
			
		||||
    # ensure the following operations do not raise an error
 | 
			
		||||
    s[s > 0.5]
 | 
			
		||||
    df[s > 0.5]
 | 
			
		||||
    s.at[0]
 | 
			
		||||
    df.at[0, "a"]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def test_to_numpy_keyword():
 | 
			
		||||
    # test the extra keyword
 | 
			
		||||
    values = [decimal.Decimal("1.1111"), decimal.Decimal("2.2222")]
 | 
			
		||||
    expected = np.array(
 | 
			
		||||
        [decimal.Decimal("1.11"), decimal.Decimal("2.22")], dtype="object"
 | 
			
		||||
    )
 | 
			
		||||
    a = pd.array(values, dtype="decimal")
 | 
			
		||||
    result = a.to_numpy(decimals=2)
 | 
			
		||||
    tm.assert_numpy_array_equal(result, expected)
 | 
			
		||||
 | 
			
		||||
    result = pd.Series(a).to_numpy(decimals=2)
 | 
			
		||||
    tm.assert_numpy_array_equal(result, expected)
 | 
			
		||||
		Reference in New Issue
	
	Block a user