针对pulse-transit的工具

This commit is contained in:
2025-02-22 16:12:02 +08:00
commit 6bc25b4e3a
7719 changed files with 1530886 additions and 0 deletions

8
dist/client/mne/io/kit/__init__.py vendored Normal file
View File

@@ -0,0 +1,8 @@
"""KIT module for reading raw data."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from .kit import read_raw_kit, read_epochs_kit
from .coreg import read_mrk

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

259
dist/client/mne/io/kit/constants.py vendored Normal file
View File

@@ -0,0 +1,259 @@
"""KIT constants."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
from ..._fiff.constants import FIFF
from ...utils import BunchConst
KIT = BunchConst()
# byte values
KIT.SHORT = 2
KIT.INT = 4
KIT.DOUBLE = 8
# channel parameters
KIT.CALIB_FACTOR = 1.0 # mne_manual p.272
KIT.RANGE = 1.0 # mne_manual p.272
KIT.UNIT_MUL = FIFF.FIFF_UNITM_NONE # default is 0 mne_manual p.273
KIT.GAINS = [1, 2, 5, 10, 20, 50, 100, 200]
KIT.HPFS = {
1: (0, 1, 3, 3),
2: (0, 0.03, 0.1, 0.3, 1, 3, 10, 30),
3: (0, 0.03, 0.1, 0.3, 1, 3, 10, 30),
4: (0, 1, 3, 10, 30, 100, 200, 500),
}
KIT.LPFS = {
1: (10, 20, 50, 100, 200, 500, 1000, 2000),
2: (10, 20, 50, 100, 200, 500, 1000, 2000),
3: (10, 20, 50, 100, 200, 500, 1000, 10000),
4: (10, 30, 100, 300, 1000, 2000, 5000, 10000),
}
KIT.BEFS = {
1: (0, 50, 60, 60),
2: (0, 0, 0),
3: (0, 60, 50, 50),
}
# Map FLL-Type to filter options (high, low, band)
KIT.FLL_SETTINGS = {
0: (1, 1, 1), # Hanger Type #1
10: (1, 1, 1), # Hanger Type #2
20: (1, 1, 1), # Hanger Type #2
50: (2, 1, 1), # Hanger Type #3
60: (2, 1, 1), # Hanger Type #3
100: (3, 3, 3), # Low Band Kapper Type
101: (1, 3, 2), # Berlin (DC, 200 Hz, Through)
120: (3, 3, 3), # Low Band Kapper Type
200: (4, 4, 3), # High Band Kapper Type
300: (2, 2, 2), # Kapper Type
}
# channel types
KIT.CHANNEL_MAGNETOMETER = 1
KIT.CHANNEL_MAGNETOMETER_REFERENCE = 0x101
KIT.CHANNEL_AXIAL_GRADIOMETER = 2
KIT.CHANNEL_AXIAL_GRADIOMETER_REFERENCE = 0x102
KIT.CHANNEL_PLANAR_GRADIOMETER = 3
KIT.CHANNEL_PLANAR_GRADIOMETER_REFERENCE = 0x103
KIT.CHANNEL_2ND_ORDER_AXIAL_GRADIOMETER = 4
KIT.CHANNEL_2ND_ORDER_AXIAL_GRADIOMETER_REFERENCE = 0x104
KIT.CHANNEL_TRIGGER = -1
KIT.CHANNEL_EEG = -2
KIT.CHANNEL_ECG = -3
KIT.CHANNEL_ETC = -4
KIT.CHANNEL_NULL = 0
KIT.CHANNELS_MEG = (
KIT.CHANNEL_MAGNETOMETER,
KIT.CHANNEL_MAGNETOMETER_REFERENCE,
KIT.CHANNEL_AXIAL_GRADIOMETER,
KIT.CHANNEL_AXIAL_GRADIOMETER_REFERENCE,
KIT.CHANNEL_PLANAR_GRADIOMETER,
KIT.CHANNEL_PLANAR_GRADIOMETER_REFERENCE,
KIT.CHANNEL_2ND_ORDER_AXIAL_GRADIOMETER,
KIT.CHANNEL_2ND_ORDER_AXIAL_GRADIOMETER_REFERENCE,
)
KIT.CHANNELS_REFERENCE = (
KIT.CHANNEL_MAGNETOMETER_REFERENCE,
KIT.CHANNEL_AXIAL_GRADIOMETER_REFERENCE,
KIT.CHANNEL_PLANAR_GRADIOMETER_REFERENCE,
KIT.CHANNEL_2ND_ORDER_AXIAL_GRADIOMETER_REFERENCE,
)
KIT.CHANNELS_MISC = (
KIT.CHANNEL_TRIGGER,
KIT.CHANNEL_EEG,
KIT.CHANNEL_ECG,
KIT.CHANNEL_ETC,
)
KIT.CHANNEL_NAME_NCHAR = {
KIT.CHANNEL_MAGNETOMETER: 6,
KIT.CHANNEL_AXIAL_GRADIOMETER: 6,
KIT.CHANNEL_TRIGGER: 32,
KIT.CHANNEL_EEG: 8,
KIT.CHANNEL_ECG: 32,
KIT.CHANNEL_ETC: 32,
}
KIT.CH_TO_FIFF_COIL = {
# KIT.CHANNEL_MAGNETOMETER: FIFF.???,
KIT.CHANNEL_MAGNETOMETER_REFERENCE: FIFF.FIFFV_COIL_KIT_REF_MAG,
KIT.CHANNEL_AXIAL_GRADIOMETER: FIFF.FIFFV_COIL_KIT_GRAD,
# KIT.CHANNEL_AXIAL_GRADIOMETER_REFERENCE: FIFF.???,
# KIT.CHANNEL_PLANAR_GRADIOMETER: FIFF.???,
# KIT.CHANNEL_PLANAR_GRADIOMETER_REFERENCE: FIFF.???,
# KIT.CHANNEL_2ND_ORDER_AXIAL_GRADIOMETER: FIFF.???,
# KIT.CHANNEL_2ND_ORDER_AXIAL_GRADIOMETER_REFERENCE: FIFF.???,
KIT.CHANNEL_TRIGGER: FIFF.FIFFV_COIL_NONE,
KIT.CHANNEL_EEG: FIFF.FIFFV_COIL_EEG,
KIT.CHANNEL_ECG: FIFF.FIFFV_COIL_NONE,
KIT.CHANNEL_ETC: FIFF.FIFFV_COIL_NONE,
KIT.CHANNEL_NULL: FIFF.FIFFV_COIL_NONE,
}
KIT.CH_TO_FIFF_KIND = {
KIT.CHANNEL_MAGNETOMETER: FIFF.FIFFV_MEG_CH,
KIT.CHANNEL_MAGNETOMETER_REFERENCE: FIFF.FIFFV_REF_MEG_CH,
KIT.CHANNEL_AXIAL_GRADIOMETER: FIFF.FIFFV_MEG_CH,
KIT.CHANNEL_AXIAL_GRADIOMETER_REFERENCE: FIFF.FIFFV_REF_MEG_CH,
KIT.CHANNEL_PLANAR_GRADIOMETER: FIFF.FIFFV_MEG_CH,
KIT.CHANNEL_PLANAR_GRADIOMETER_REFERENCE: FIFF.FIFFV_REF_MEG_CH,
KIT.CHANNEL_2ND_ORDER_AXIAL_GRADIOMETER: FIFF.FIFFV_MEG_CH,
KIT.CHANNEL_2ND_ORDER_AXIAL_GRADIOMETER_REFERENCE: FIFF.FIFFV_REF_MEG_CH,
KIT.CHANNEL_TRIGGER: FIFF.FIFFV_MISC_CH,
KIT.CHANNEL_EEG: FIFF.FIFFV_EEG_CH,
KIT.CHANNEL_ECG: FIFF.FIFFV_ECG_CH,
KIT.CHANNEL_ETC: FIFF.FIFFV_MISC_CH,
KIT.CHANNEL_NULL: FIFF.FIFFV_MISC_CH,
}
KIT.CH_LABEL = {
KIT.CHANNEL_TRIGGER: "TRIGGER",
KIT.CHANNEL_EEG: "EEG",
KIT.CHANNEL_ECG: "ECG",
KIT.CHANNEL_ETC: "MISC",
KIT.CHANNEL_NULL: "MISC",
}
# Acquisition modes
KIT.CONTINUOUS = 1
KIT.EVOKED = 2
KIT.EPOCHS = 3
# coreg constants
KIT.DIG_POINTS = 10000
# Known KIT systems
# -----------------
# KIT recording system is encoded in the SQD file as integer:
KIT.SYSTEM_MQ_ADULT = 345 # Macquarie Dept of Cognitive Science, 2006 -
KIT.SYSTEM_MQ_CHILD = 403 # Macquarie Dept of Cognitive Science, 2006 -
KIT.SYSTEM_AS = 260 # Academia Sinica at Taiwan
KIT.SYSTEM_AS_2008 = 261 # Academia Sinica, 2008 or 2009 -
KIT.SYSTEM_NYU_2008 = 32 # NYU-NY, July 7, 2008 -
KIT.SYSTEM_NYU_2009 = 33 # NYU-NY, January 24, 2009 -
KIT.SYSTEM_NYU_2010 = 34 # NYU-NY, January 22, 2010 -
KIT.SYSTEM_NYU_2019 = 35 # NYU-NY, September 18, 2019 -
KIT.SYSTEM_NYUAD_2011 = 440 # NYU-AD initial launch May 20, 2011 -
KIT.SYSTEM_NYUAD_2012 = 441 # NYU-AD more channels July 11, 2012 -
KIT.SYSTEM_NYUAD_2014 = 442 # NYU-AD move to NYUAD campus Nov 20, 2014 -
KIT.SYSTEM_UMD_2004 = 51 # UMD Marie Mount Hall, October 1, 2004 -
KIT.SYSTEM_UMD_2014_07 = 52 # UMD update to 16 bit ADC, July 4, 2014 -
KIT.SYSTEM_UMD_2014_12 = 53 # UMD December 4, 2014 -
KIT.SYSTEM_UMD_2019_09 = 54 # UMD September 3, 2019 -
KIT.SYSTEM_YOKOGAWA_2017_01 = 1001 # Kanazawa (until 2017)
KIT.SYSTEM_YOKOGAWA_2018_01 = 10020 # Kanazawa (since 2018)
KIT.SYSTEM_YOKOGAWA_2020_08 = 10021 # Kanazawa (since August 2020)
KIT.SYSTEM_EAGLE_TECHNOLOGY_PTB_2008 = 124
# Sensor layouts for plotting
KIT_LAYOUT = {
KIT.SYSTEM_AS: None,
KIT.SYSTEM_AS_2008: "KIT-AS-2008",
KIT.SYSTEM_MQ_ADULT: "KIT-160",
KIT.SYSTEM_MQ_CHILD: "KIT-125",
KIT.SYSTEM_NYU_2008: "KIT-157",
KIT.SYSTEM_NYU_2009: "KIT-157",
KIT.SYSTEM_NYU_2010: "KIT-157",
KIT.SYSTEM_NYU_2019: None,
KIT.SYSTEM_NYUAD_2011: "KIT-AD",
KIT.SYSTEM_NYUAD_2012: "KIT-AD",
KIT.SYSTEM_NYUAD_2014: "KIT-AD",
KIT.SYSTEM_UMD_2004: None,
KIT.SYSTEM_UMD_2014_07: None,
KIT.SYSTEM_UMD_2014_12: "KIT-UMD-3",
KIT.SYSTEM_UMD_2019_09: None,
KIT.SYSTEM_YOKOGAWA_2017_01: None,
KIT.SYSTEM_YOKOGAWA_2018_01: None,
KIT.SYSTEM_YOKOGAWA_2020_08: None,
KIT.SYSTEM_EAGLE_TECHNOLOGY_PTB_2008: None,
}
# Sensor neighbor definitions
KIT_NEIGHBORS = {
KIT.SYSTEM_AS: None,
KIT.SYSTEM_AS_2008: None,
KIT.SYSTEM_MQ_ADULT: None,
KIT.SYSTEM_MQ_CHILD: None,
KIT.SYSTEM_NYU_2008: "KIT-157",
KIT.SYSTEM_NYU_2009: "KIT-157",
KIT.SYSTEM_NYU_2010: "KIT-157",
KIT.SYSTEM_NYU_2019: "KIT-NYU-2019",
KIT.SYSTEM_NYUAD_2011: "KIT-208",
KIT.SYSTEM_NYUAD_2012: "KIT-208",
KIT.SYSTEM_NYUAD_2014: "KIT-208",
KIT.SYSTEM_UMD_2004: "KIT-UMD-1",
KIT.SYSTEM_UMD_2014_07: "KIT-UMD-2",
KIT.SYSTEM_UMD_2014_12: "KIT-UMD-3",
KIT.SYSTEM_UMD_2019_09: "KIT-UMD-4",
KIT.SYSTEM_YOKOGAWA_2017_01: None,
KIT.SYSTEM_YOKOGAWA_2018_01: None,
KIT.SYSTEM_YOKOGAWA_2020_08: None,
KIT.SYSTEM_EAGLE_TECHNOLOGY_PTB_2008: None,
}
# Names displayed in the info dict description
KIT_SYSNAMES = {
KIT.SYSTEM_MQ_ADULT: "Macquarie Dept of Cognitive Science (Adult), 2006-",
KIT.SYSTEM_MQ_CHILD: "Macquarie Dept of Cognitive Science (Child), 2006-",
KIT.SYSTEM_AS: "Academia Sinica, -2008",
KIT.SYSTEM_AS_2008: "Academia Sinica, 2008-",
KIT.SYSTEM_NYU_2008: "NYU New York, 2008-9",
KIT.SYSTEM_NYU_2009: "NYU New York, 2009-10",
KIT.SYSTEM_NYU_2010: "NYU New York, 2010-",
KIT.SYSTEM_NYUAD_2011: "New York University Abu Dhabi, 2011-12",
KIT.SYSTEM_NYUAD_2012: "New York University Abu Dhabi, 2012-14",
KIT.SYSTEM_NYUAD_2014: "New York University Abu Dhabi, 2014-",
KIT.SYSTEM_UMD_2004: "University of Maryland, 2004-14",
KIT.SYSTEM_UMD_2014_07: "University of Maryland, 2014",
KIT.SYSTEM_UMD_2014_12: "University of Maryland, 2014-",
KIT.SYSTEM_UMD_2019_09: "University of Maryland, 2019-",
KIT.SYSTEM_YOKOGAWA_2017_01: "Yokogawa of Kanazawa (until 2017)",
KIT.SYSTEM_YOKOGAWA_2018_01: "Yokogawa of Kanazawa (since 2018)",
KIT.SYSTEM_YOKOGAWA_2020_08: "Yokogawa of Kanazawa (since August 2020)",
KIT.SYSTEM_EAGLE_TECHNOLOGY_PTB_2008: "Eagle Technology MEG (KIT/Yokogawa style) at PTB (since 2008, software upgrade in 2018)", # noqa: E501
}
LEGACY_AMP_PARAMS = {
KIT.SYSTEM_NYU_2008: (5.0, 11.0),
KIT.SYSTEM_NYU_2009: (5.0, 11.0),
KIT.SYSTEM_NYU_2010: (5.0, 11.0),
KIT.SYSTEM_UMD_2004: (5.0, 11.0),
}
# Ones that we don't use are commented out
KIT.DIR_INDEX_DIR = 0
KIT.DIR_INDEX_SYSTEM = 1
KIT.DIR_INDEX_CHANNELS = 4
KIT.DIR_INDEX_CALIBRATION = 5
# FLL = 6
KIT.DIR_INDEX_AMP_FILTER = 7
KIT.DIR_INDEX_ACQ_COND = 8
KIT.DIR_INDEX_RAW_DATA = 9
# AVERAGED_DATA = 10
# MRI = 11
KIT.DIR_INDEX_COREG = 12
# MAGNETIC_SOURCE = 13
# TRIGGER = 14
# BOOKMARKS = 15
# DIGITIZER = 25
KIT.DIR_INDEX_DIG_POINTS = 26
KIT.DIR_INDEX_CHPI_DATA = 29

233
dist/client/mne/io/kit/coreg.py vendored Normal file
View File

@@ -0,0 +1,233 @@
"""Coordinate Point Extractor for KIT system."""
# Authors: The MNE-Python contributors.
# License: BSD-3-Clause
# Copyright the MNE-Python contributors.
import re
from collections import OrderedDict
from os import SEEK_CUR, PathLike
from pathlib import Path
import numpy as np
from ..._fiff._digitization import _make_dig_points
from ...channels.montage import (
_check_dig_shape,
read_custom_montage,
read_dig_polhemus_isotrak,
read_polhemus_fastscan,
)
from ...transforms import (
Transform,
als_ras_trans,
apply_trans,
get_ras_to_neuromag_trans,
)
from ...utils import _check_fname, _check_option, warn
from .constants import FIFF, KIT
INT32 = "<i4"
FLOAT64 = "<f8"
def read_mrk(fname):
r"""Marker Point Extraction in MEG space directly from sqd.
Parameters
----------
fname : path-like
Absolute path to Marker file.
File formats allowed: \*.sqd, \*.mrk, \*.txt.
Returns
-------
mrk_points : ndarray, shape (n_points, 3)
Marker points in MEG space [m].
"""
from .kit import _read_dirs
fname = Path(_check_fname(fname, "read", must_exist=True, name="mrk file"))
_check_option("file extension", fname.suffix, (".sqd", ".mrk", ".txt"))
if fname.suffix in (".sqd", ".mrk"):
with open(fname, "rb", buffering=0) as fid:
dirs = _read_dirs(fid)
fid.seek(dirs[KIT.DIR_INDEX_COREG]["offset"])
# skips match_done, meg_to_mri and mri_to_meg
fid.seek(KIT.INT + (2 * KIT.DOUBLE * 16), SEEK_CUR)
mrk_count = np.fromfile(fid, INT32, 1)[0]
pts = []
for _ in range(mrk_count):
# mri_type, meg_type, mri_done, meg_done
_, _, _, meg_done = np.fromfile(fid, INT32, 4)
_, meg_pts = np.fromfile(fid, FLOAT64, 6).reshape(2, 3)
if meg_done:
pts.append(meg_pts)
mrk_points = np.array(pts)
else:
assert fname.suffix == ".txt"
mrk_points = _read_dig_kit(fname, unit="m")
# check output
mrk_points = np.asarray(mrk_points)
if mrk_points.shape != (5, 3):
err = f"{repr(fname)} is no marker file, shape is {mrk_points.shape}"
raise ValueError(err)
return mrk_points
def read_sns(fname):
"""Sensor coordinate extraction in MEG space.
Parameters
----------
fname : path-like
Absolute path to sensor definition file.
Returns
-------
locs : numpy.array, shape = (n_points, 3)
Sensor coil location.
"""
p = re.compile(
r"\d,[A-Za-z]*,([\.\-0-9]+),"
+ r"([\.\-0-9]+),([\.\-0-9]+),"
+ r"([\.\-0-9]+),([\.\-0-9]+)"
)
with open(fname) as fid:
locs = np.array(p.findall(fid.read()), dtype=float)
return locs
def _set_dig_kit(mrk, elp, hsp, eeg, *, bad_coils=()):
"""Add landmark points and head shape data to the KIT instance.
Digitizer data (elp and hsp) are represented in [mm] in the Polhemus
ALS coordinate system. This is converted to [m].
Parameters
----------
mrk : path-like | array_like, shape (5, 3) | None
Marker points representing the location of the marker coils with
respect to the MEG Sensors, or path to a marker file.
elp : path-like | array_like, shape (8, 3) | None
Digitizer points representing the location of the fiducials and the
marker coils with respect to the digitized head shape, or path to a
file containing these points.
hsp : path-like | array, shape (n_points, 3) | None
Digitizer head shape points, or path to head shape file. If more
than 10`000 points are in the head shape, they are automatically
decimated.
bad_coils : list
Indices of bad marker coils (up to two). Bad coils will be excluded
when computing the device-head transformation.
eeg : dict
Ordered dict of EEG dig points.
Returns
-------
dig_points : list
List of digitizer points for info['dig'].
dev_head_t : Transform
A dictionary describing the device-head transformation.
hpi_results : list
The hpi results.
"""
from ...coreg import _decimate_points, fit_matched_points
if isinstance(hsp, (str, Path, PathLike)):
hsp = _read_dig_kit(hsp)
n_pts = len(hsp)
if n_pts > KIT.DIG_POINTS:
hsp = _decimate_points(hsp, res=0.005)
n_new = len(hsp)
warn(
f"The selected head shape contained {n_pts} points, which is more than "
f"recommended ({KIT.DIG_POINTS}), and was automatically downsampled to "
f"{n_new} points. The preferred way to downsample is using FastScan."
)
if isinstance(elp, (str, Path, PathLike)):
elp_points = _read_dig_kit(elp)
if len(elp_points) != 8:
raise ValueError(
f"File {repr(elp)} should contain 8 points; got shape "
f"{elp_points.shape}."
)
elp = elp_points
if len(bad_coils) > 0:
elp = np.delete(elp, np.array(bad_coils) + 3, 0)
# check we have at least 3 marker coils (whether read from file or
# passed in directly)
if len(elp) not in (6, 7, 8):
raise ValueError(f"ELP should contain 6 ~ 8 points; got shape {elp.shape}.")
if isinstance(mrk, (str, Path, PathLike)):
mrk = read_mrk(mrk)
if len(bad_coils) > 0:
mrk = np.delete(mrk, bad_coils, 0)
if len(mrk) not in (3, 4, 5):
raise ValueError(f"MRK should contain 3 ~ 5 points; got shape {mrk.shape}.")
mrk = apply_trans(als_ras_trans, mrk)
nasion, lpa, rpa = elp[:3]
nmtrans = get_ras_to_neuromag_trans(nasion, lpa, rpa)
elp = apply_trans(nmtrans, elp)
hsp = apply_trans(nmtrans, hsp)
eeg = OrderedDict((k, apply_trans(nmtrans, p)) for k, p in eeg.items())
# device head transform
trans = fit_matched_points(tgt_pts=elp[3:], src_pts=mrk, out="trans")
nasion, lpa, rpa = elp[:3]
elp = elp[3:]
dig_points = _make_dig_points(nasion, lpa, rpa, elp, hsp, dig_ch_pos=eeg)
dev_head_t = Transform("meg", "head", trans)
hpi_results = [
dict(
dig_points=[
dict(
ident=ci,
r=r,
kind=FIFF.FIFFV_POINT_HPI,
coord_frame=FIFF.FIFFV_COORD_UNKNOWN,
)
for ci, r in enumerate(mrk)
],
coord_trans=dev_head_t,
)
]
return dig_points, dev_head_t, hpi_results
def _read_dig_kit(fname, unit="auto"):
# Read dig points from a file and return ndarray, using FastSCAN for .txt
fname = _check_fname(fname, "read", must_exist=True, name="hsp or elp file")
assert unit in ("auto", "m", "mm")
_check_option("file extension", fname.suffix, (".hsp", ".elp", ".mat", ".txt"))
if fname.suffix == ".txt":
unit = "mm" if unit == "auto" else unit
out = read_polhemus_fastscan(fname, unit=unit, on_header_missing="ignore")
elif fname.suffix in (".hsp", ".elp"):
unit = "m" if unit == "auto" else unit
mon = read_dig_polhemus_isotrak(fname, unit=unit)
if fname.suffix == ".hsp":
dig = [d["r"] for d in mon.dig if d["kind"] != FIFF.FIFFV_POINT_CARDINAL]
else:
dig = [d["r"] for d in mon.dig]
if (
dig
and mon.dig[0]["kind"] == FIFF.FIFFV_POINT_CARDINAL
and mon.dig[0]["ident"] == FIFF.FIFFV_POINT_LPA
):
# LPA, Nasion, RPA -> NLR
dig[:3] = [dig[1], dig[0], dig[2]]
out = np.array(dig, float)
else:
assert fname.suffix == ".mat"
out = np.array([d["r"] for d in read_custom_montage(fname).dig])
_check_dig_shape(out)
return out

1045
dist/client/mne/io/kit/kit.py vendored Normal file

File diff suppressed because it is too large Load Diff